

For more Free E-books

Visit
http://ali-almukhtar.blogspot.com

Advanced PIC Microcontroller
Projects in C

This page intentionally left blank

Advanced PIC Microcontroller
Projects in C

From USB to RTOS with the PIC18F Series

Dogan Ibrahim

Newnes is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright # 2008, Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of

the publisher.

Permissions may be sought directly from Elsevier s Science & Technology Rights Department in Oxford,

UK: phone: (þ44) 1865 843830, fax: (þ44) 1865 853333, E-mail: permissions@elsevier.com. You may

also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support &

Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-free

paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Ibrahim, Dogan.

Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC18F series/Dogan Ibrahim

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-7506-8611-2 (pbk. : alk. paper) 1. Programmable controllers. 2. C (Computer program

language) I. Title.

TJ223.P76I268 2008

629.8095––dc22
2007050550

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-0-7506-8611-2

For information on all Newnes publications
visit our Web site at www.books.elsevier.com

Printed in the United States of America

08 09 10 11 12 13 9 8 7 6 5 4 3 2 1

Contents

Preface... xiii

Acknowledgments .. xv

Chapter 1: Microcomputer Systems.. 1
1.1 Introduction..1
1.2 Microcontroller Systems ...1

1.2.1 RAM ...5
1.2.2 ROM ...5
1.2.3 PROM...5
1.2.4 EPROM...6
1.2.5 EEPROM ..6
1.2.6 Flash EEPROM ...6

1.3 Microcontroller Features...6
1.3.1 Supply Voltage ..7
1.3.2 The Clock..7
1.3.3 Timers ...7
1.3.4 Watchdog ..8
1.3.5 Reset Input ..8
1.3.6 Interrupts ...8
1.3.7 Brown-out Detector ...9
1.3.8 Analog-to-Digital Converter ...9
1.3.9 Serial Input-Output ..9
1.3.10 EEPROM Data Memory ..10
1.3.11 LCD Drivers..10
1.3.12 Analog Comparator..10
1.3.13 Real-time Clock...11
1.3.14 Sleep Mode ...11
1.3.15 Power-on Reset..11

www.newnespress.com

1.3.16 Low-Power Operation ..11
1.3.17 Current Sink/Source Capability ..11
1.3.18 USB Interface ..12
1.3.19 Motor Control Interface ...12
1.3.20 CAN Interface ...12
1.3.21 Ethernet Interface...12
1.3.22 ZigBee Interface ..12

1.4 Microcontroller Architectures..12
1.4.1 RISC and CISC ...13

1.5 Number Systems...13
1.5.1 Decimal Number System ...14
1.5.2 Binary Number System..14
1.5.3 Octal Number System ..15
1.5.4 Hexadecimal Number System ..15

1.6 Converting Binary Numbers into Decimal...16
1.7 Converting Decimal Numbers into Binary...16
1.8 Converting Binary Numbers into Hexadecimal..18
1.9 Converting Hexadecimal Numbers into Binary..20
1.10 Converting Hexadecimal Numbers into Decimal21
1.11 Converting Decimal Numbers into Hexadecimal22
1.12 Converting Octal Numbers into Decimal...23
1.13 Converting Decimal Numbers into Octal...23
1.14 Converting Octal Numbers into Binary ...24
1.15 Converting Binary Numbers into Octal ...26
1.16 Negative Numbers ..26
1.17 Adding Binary Numbers ...27
1.18 Subtracting Binary Numbers ...29
1.19 Multiplication of Binary Numbers...29
1.20 Division of Binary Numbers ...31
1.21 Floating Point Numbers ..31
1.22 Converting a Floating Point Number into Decimal33

1.22.1 Normalizing Floating Point Numbers ...34
1.22.2 Converting a Decimal Number into Floating Point34
1.22.3 Multiplication and Division of Floating Point Numbers36
1.22.4 Addition and Subtraction of Floating Point Numbers37

1.23 BCD Numbers ..38
1.24 Summary..40
1.25 Exercises ..40

Chapter 2: PIC18F Microcontroller Series .. 43
2.1 PIC18FXX2 Architecture..46

2.1.1 Program Memory Organization ..50

www.newnespress.com

vi Contents

2.1.2 Data Memory Organization ..51
2.1.3 The Configuration Registers...52
2.1.4 The Power Supply ...57
2.1.5 The Reset ..57
2.1.6 The Clock Sources...60
2.1.7 Watchdog Timer ..67
2.1.8 Parallel I/O Ports ...68
2.1.9 Timers ...74
2.1.10 Capture/Compare/PWM Modules (CCP) ..84
2.1.11 Analog-to-Digital Converter (A/D) Module93
2.1.12 Interrupts ... 101

2.2 Summary.. 115
2.3 Exercises .. 115

Chapter 3: C Programming Language..119
3.1 Structure of a mikroC Program... 120

3.1.1 Comments ... 121
3.1.2 Beginning and Ending of a Program .. 121
3.1.3 Terminating Program Statements.. 121
3.1.4 White Spaces ... 122
3.1.5 Case Sensitivity ... 122
3.1.6 Variable Names ... 123
3.1.7 Variable Types .. 123
3.1.8 Constants ... 126
3.1.9 Escape Sequences .. 128
3.1.10 Static Variables.. 129
3.1.11 External Variables ... 129
3.1.12 Volatile Variables .. 130
3.1.13 Enumerated Variables .. 130
3.1.14 Arrays ... 131
3.1.15 Pointers ... 133
3.1.16 Structures .. 135
3.1.17 Unions... 138
3.1.18 Operators in C ... 139
3.1.19 Modifying the Flow of Control .. 148
3.1.20 Mixing mikroC with Assembly Language Statements 159

3.2 PIC Microcontroller Input-Output Port Programming 160
3.3 Programming Examples .. 161
3.4 Summary.. 165
3.5 Exercises .. 165

www.newnespress.com

viiContents

Chapter 4: Functions and Libraries in mikroC...169
4.1 mikroC Functions ... 169

4.1.1 Function Prototypes ... 173
4.1.2 Passing Arrays to Functions... 177
4.1.3 Passing Variables by Reference to Functions.................................... 180
4.1.4 Variable Number of Arguments ... 181
4.1.5 Function Reentrancy .. 184
4.1.6 Static Function Variables ... 184

4.2 mikroC Built-in Functions .. 184
4.3 mikroC Library Functions... 188

4.3.1 EEPROM Library .. 189
4.3.2 LCD Library.. 192
4.3.3 Software UART Library .. 199
4.3.4 Hardware USART Library ... 204
4.3.5 Sound Library.. 206
4.3.6 ANSI C Library... 208
4.3.7 Miscellaneous Library.. 212

4.4 Summary.. 218
4.5 Exercises .. 219

Chapter 5: PIC18 Development Tools ...221
5.1 Software Development Tools .. 222

5.1.1 Text Editors... 222
5.1.2 Assemblers and Compilers... 222
5.1.3 Simulators ... 223
5.1.4 High-Level Language Simulators ... 224
5.1.5 Integrated Development Environments (IDEs).................................. 224

5.2 Hardware Development Tools... 224
5.2.1 Development Boards.. 225
5.2.2 Device Programmers.. 239
5.2.3 In-Circuit Debuggers ... 242
5.2.4 In-Circuit Emulators .. 245
5.2.5 Breadboards... 248

5.3 mikroC Integrated Development Environment (IDE) 251
5.3.1 mikroC IDE Screen ... 251
5.3.2 Creating and Compiling a New File... 258
5.3.3 Using the Simulator ... 265
5.3.4 Using the mikroICD In-Circuit Debugger... 272
5.3.5 Using a Development Board .. 277

5.4 Summary.. 285
5.5 Exercises .. 285

www.newnespress.com

viii Contents

Chapter 6: Simple PIC18 Projects ..287
6.1 Program Description Language (PDL) .. 288

6.1.1 START-END .. 288
6.1.2 Sequencing.. 288
6.1.3 IF-THEN-ELSE-ENDIF .. 288
6.1.4 DO-ENDDO ... 289
6.1.5 REPEAT-UNTIL... 290

Project 6.1—Chasing LEDs .. 290
Project 6.2—LED Dice ... 295
Project 6.3—Two-Dice Project.. 301
Project 6.4—Two-Dice Project Using Fewer I/O Pins 303
Project 6.5—7-Segment LED Counter... 313
Project 6.6—Two-Digit Multiplexed 7-Segment LED...................................... 319
Project 6.7—Two-Digit Multiplexed 7-Segment LED Counter

with Timer Interrupt.. 326
Project 6.8—Voltmeter with LCD Display .. 334
Project 6.9—Calculator with Keypad and LCD ... 341
Project 6.10—Serial Communication–Based Calculator 352

Chapter 7: Advanced PIC18 Projects—SD Card Projects371
7.1 The SD Card .. 371

7.1.1 The SPI Bus.. 373
7.1.2 Operation of the SD Card in SPI Mode ... 377

7.2 mikroC Language SD Card Library Functions .. 384
Project 7.1—Read CID Register and Display on a PC Screen 385
Project 7.2—Read/Write to SD Card Sectors... 392
Project 7.3—Using the Card Filing System ... 392
Project 7.4—Temperature Logger ... 397

Chapter 8: Advanced PIC18 Projects—USB Bus Projects409
8.1 Speed Identification on the Bus .. 413
8.2 USB States ... 413
8.3 USB Bus Communication... 414

8.3.1 Packets.. 414
8.3.2 Data Flow Types... 416
8.3.3 Enumeration.. 417

8.4 Descriptors ... 418
8.4.1 Device Descriptors .. 418
8.4.2 Configuration Descriptors.. 421
8.4.3 Interface Descriptors ... 423
8.4.4 HID Descriptors .. 425
8.4.5 Endpoint Descriptors ... 426

www.newnespress.com

ixContents

8.5 PIC18 Microcontroller USB Bus Interface .. 427
8.6 mikroC Language USB Bus Library Functions ... 429
Project 8.1—USB-Based Microcontroller Output Port 430
Project 8.2—USB-Based Microcontroller Input/Output 456
Project 8.3—USB-Based Ambient Pressure Display on the PC........................ 464

Chapter 9: Advanced PIC18 Projects—CAN Bus Projects475
9.1 Data Frame... 481

9.1.1 Start of Frame (SOF) .. 482
9.1.2 Arbitration Field.. 482
9.1.3 Control Field... 484
9.1.4 Data Field ... 484
9.1.5 CRC Field... 484
9.1.6 ACK Field .. 485

9.2 Remote Frame .. 485
9.3 Error Frame.. 485
9.4 Overload Frame.. 485
9.5 Bit Stuffing .. 486
9.6 Types of Errors .. 486
9.7 Nominal Bit Timing ... 486
9.8 PIC Microcontroller CAN Interface .. 489
9.9 PIC18F258 Microcontroller... 491

9.9.1 Configuration Mode .. 493
9.9.2 Disable Mode.. 493
9.9.3 Normal Operation Mode.. 493
9.9.4 Listen-only Mode .. 493
9.9.5 Loop-Back Mode .. 494
9.9.6 Error Recognition Mode.. 494
9.9.7 CAN Message Transmission.. 494
9.9.8 CAN Message Reception... 494
9.9.9 Calculating the Timing Parameters .. 496

9.10 mikroC CAN Functions .. 498
9.10.1 CANSetOperationMode ... 499
9.10.2 CANGetOperationMode .. 500
9.10.3 CANInitialize .. 500
9.10.4 CANSetBaudRate .. 501
9.10.5 CANSetMask .. 501
9.10.6 CANSetFilter .. 502
9.10.7 CANRead.. 502
9.10.8 CANWrite... 503

9.11 CAN Bus Programming .. 504
Project 9.1—Temperature Sensor CAN Bus Project .. 504

www.newnespress.com

x Contents

Chapter 10: Multi-Tasking and Real-Time Operating Systems....................515
10.1 State Machines ... 516
10.2 The Real-Time Operating System (RTOS) .. 518

10.2.1 The Scheduler.. 518
10.3 RTOS Services ... 521
10.4 Synchronization and Messaging Tools .. 521
10.5 CCS PIC C Compiler RTOS... 522

10.5.1 Preparing for RTOS .. 523
10.5.2 Declaring a Task ... 524

Project 10.1—LEDs.. 524
Project 10.2—Random Number Generator... 528
Project 10.3—Voltmeter with RS232 Serial Output ... 532

Index...541

www.newnespress.com

xiContents

This page intentionally left blank

Preface

A microcontroller is a microprocessor system which contains data and program

memory, serial and parallel I/O, timers, and external and internal interrupts—all

integrated into a single chip that can be purchased for as little as two dollars. About 40

percent of all microcontroller applications are found in office equipment, such as PCs,

laser printers, fax machines, and intelligent telephones. About one third of all

microcontrollers are found in consumer electronic goods. Products like CD players,

hi-fi equipment, video games, washing machines, and cookers fall into this category.

The communications market, the automotive market, and the military share the rest of

the applications.

This book is written for advanced students, for practicing engineers, and for hobbyists

who want to learn more about the programming and applications of PIC18F-series

microcontrollers. The book assumes the reader has taken a course on digital logic

design and been exposed to writing programs using at least one high-level programming

language. Knowledge of the C programming language will be useful, and familiarity

with at least one member of the PIC16F series of microcontrollers will be an advantage.

Knowledge of assembly language programming is not required since all the projects in

the book are based on the C language.

Chapter 1 presents the basic features of microcontrollers, discusses the important

topic of numbering systems, and describes how to convert between number bases.

Chapter 2 reviews the PIC18F series of microcontrollers and describes various

features of these microcontrollers in detail.

Chapter 3 provides a short tutorial on the C language and then examines the features

of the mikroC compiler.

www.newnespress.com

Chapter 4 covers advanced features of the mikroC language. Topics such as built-in

functions and libraries are discussed in this chapter with examples.

Chapter 5 explores the various software and hardware development tools for the

PIC18F series of microcontrollers. Various commercially available development kits

as well as development tools such as simulators, emulators, and in-circuit debuggers

are described with examples.

Chapter 6 provides some simple projects using the PIC18F series of microcontrollers

and the mikroC compiler. All the projects are based on the PIC18F452 micro-

controller, and all of them have been tested. This chapter should be useful for those

who are new to PIC microcontrollers as well as for those who want to extend their

knowledge of programming PIC18F microcontrollers using the mikroC language.

Chapter 7 covers the use of SD memory cards in PIC18F microcontroller projects.

The theory of these cards is given with real working examples.

Chapter 8 reviews the popular USB bus, discussing the basic theory of this bus

system with real working projects that illustrate how to design PIC18F-based projects

communicating with a PC over the USB bus.

The CAN bus is currently used in many automotive applications. Chapter 9 presents

a brief theory of this bus and also discusses the design of PIC18F microcontroller-

based projects with CAN bus interface.

Chapter 10 is about real-time operating systems (RTOS) and multi-tasking. The

basic theory of RTOS systems is described and simple multi-tasking applications are

given.

The CD-ROM that accompanies this book contains all the program source files and

HEX files for the projects described in the book. In addition, a 2K size limited version

of the mikroC compiler is included on the CD-ROM.

Dogan Ibrahim

London, 2007

www.newnespress.com

xiv Preface

Acknowledgments

The following material is reproduced in this book with the kind permission of the

respective copyright holders and may not be reprinted, or reproduced in any other way,

without their prior consent.

Figures 2.1–2.10, 2.22–2.36, 2.37, 2.38, 2.41–2.55, 5.2–5.4, 5.17, 5.20, 8.8, and 9.13,

and Table 2.2 are taken from Microchip Technology Inc. data sheets PIC18FXX2

(DS39564C) and PIC18F2455/2550/4455/4550 (DS39632D).

Figure 5.5 is taken from the web site of BAJI Labs.

Figures 5.6–5.8 are taken from the web site of Shuan Shizu Ent. Co., Ltd.

Figures 5.9, 5.13, 5.18 are taken from the web site of Custom Computer Services Inc.

Figures 5.10, 5.19, and 6.43 are taken from the web site of mikroElektronika Ltd.

Figure 5.11 is taken from the web site of Futurlec.

Figure 5.21 is taken from the web site of Smart Communications Ltd.

Figure 5.22 is taken from the web site of RF Solutions.

Figure 5.23 is taken from the web site of Phyton.

Figures 5.1 and 5.14 are taken from the web site of microEngineering Labs Inc.

Figure 5.16 is taken from the web site of Kanda Systems.

Thanks is due to mikroElektronika Ltd. for their technical support and for permission to

include a limited size mikroC compiler on the CD-ROM that accompanies this book.

PICW, PICSTARTW, and MPLABW are all registered trademarks of Microchip

Technology Inc.

www.newnespress.com

CHAP T E R 1

Microcomputer Systems

1.1 Introduction

The term microcomputer is used to describe a system that includes at minimum a

microprocessor, program memory, data memory, and an input-output (I/O) device.

Some microcomputer systems include additional components such as timers, counters,

and analog-to-digital converters. Thus, a microcomputer system can be anything from a

large computer having hard disks, floppy disks, and printers to a single-chip embedded

controller.

In this book we are going to consider only the type of microcomputers that consist of

a single silicon chip. Such microcomputer systems are also called microcontrollers, and

they are used in many household goods such as microwave ovens, TV remote control

units, cookers, hi-fi equipment, CD players, personal computers, and refrigerators.

Many different microcontrollers are available on the market. In this book we shall be

looking at programming and system design for the PIC (programmable interface

controller) series of microcontrollers manufactured by Microchip Technology Inc.

1.2 Microcontroller Systems

A microcontroller is a single-chip computer. Micro suggests that the device is

small, and controller suggests that it is used in control applications. Another term for

microcontroller is embedded controller, since most of the microcontrollers are built

into (or embedded in) the devices they control.

A microprocessor differs from a microcontroller in a number of ways. The main

distinction is that a microprocessor requires several other components for its operation,

www.newnespress.com

such as program memory and data memory, input-output devices, and an external clock

circuit. A microcontroller, on the other hand, has all the support chips incorporated

inside its single chip. All microcontrollers operate on a set of instructions (or the user

program) stored in their memory. A microcontroller fetches the instructions from its

program memory one by one, decodes these instructions, and then carries out the

required operations.

Microcontrollers have traditionally been programmed using the assembly language

of the target device. Although the assembly language is fast, it has several

disadvantages. An assembly program consists of mnemonics, which makes learning

and maintaining a program written using the assembly language difficult. Also,

microcontrollers manufactured by different firms have different assembly languages,

so the user must learn a new language with every new microcontroller he or

she uses.

Microcontrollers can also be programmed using a high-level language, such as BASIC,

PASCAL, or C. High-level languages are much easier to learn than assembly languages.

They also facilitate the development of large and complex programs. In this book we

shall be learning the programming of PIC microcontrollers using the popular C

language known as mikroC, developed by mikroElektronika.

In theory, a single chip is sufficient to have a running microcontroller system. In

practical applications, however, additional components may be required so the

microcomputer can interface with its environment. With the advent of the PIC family of

microcontrollers the development time of an electronic project has been reduced to

several hours.

Basically, a microcomputer executes a user program which is loaded in its program

memory. Under the control of this program, data is received from external devices

(inputs), manipulated, and then sent to external devices (outputs). For example, in a

microcontroller-based oven temperature control system the microcomputer reads the

temperature using a temperature sensor and then operates a heater or a fan to keep

the temperature at the required value. Figure 1.1 shows a block diagram of a simple

oven temperature control system.

The system shown in Figure 1.1 is very simple. A more sophisticated system may

include a keypad to set the temperature and an LCD to display it. Figure 1.2 shows a

block diagram of this more sophisticated temperature control system.

www.newnespress.com

2 Chapter 1

Heater

Fan
Sensorinput

output

output

OVENMicrocontroller

Figure 1.1: Microcontroller-based oven temperature control system

Heater

Fan
Sensor

inputs

output

output

OVEN

Microcontroller

LCD

output

Keypad

Figure 1.2: Temperature control system with a keypad and LCD

www.newnespress.com

3Microcomputer Systems

We can make the design even more sophisticated (see Figure 1.3) by adding an alarm

that activates if the temperature goes outside the desired range. Also, the temperature

readings can be sent to a PC every second for archiving and further processing. For

example, a graph of the daily temperature can be plotted on the PC. As you can see,

because microcontrollers are programmable the final system can be as simple or as

complicated as we like.

A microcontroller is a very powerful tool that allows a designer to create sophisticated

input-output data manipulation under program control. Microcontrollers are classified

by the number of bits they process. Microcontrollers with 8 bits are the most popular

and are used in most microcontroller-based applications. Microcontrollers with 16 and

32 bits are much more powerful, but are usually more expensive and not required in

most small- or medium-size general purpose applications that call for microcontrollers.

The simplest microcontroller architecture consists of a microprocessor, memory, and

input-output. The microprocessor consists of a central processing unit (CPU) and a

Heater

Fan
Sensor

input

output

output

OVENMicrocontroller

LCD

output

Keypad

output

PC

buzzeroutput
input

Figure 1.3: A more sophisticated temperature controller

www.newnespress.com

4 Chapter 1

control unit (CU). The CPU is the brain of the microcontroller; this is where all the

arithmetic and logic operations are performed. The CU controls the internal operations

of the microprocessor and sends signals to other parts of the microcontroller to carry out

the required instructions.

Memory, an important part of a microcontroller system, can be classified into two

types: program memory and data memory. Program memory stores the program written

by the programmer and is usually nonvolatile (i.e., data is not lost after the power is

turned off). Data memory stores the temporary data used in a program and is usually

volatile (i.e., data is lost after the power is turned off).

There are basically six types of memories, summarized as follows:

1.2.1 RAM

RAM, random access memory, is a general purpose memory that usually stores the

user data in a program. RAM memory is volatile in the sense that it cannot retain

data in the absence of power (i.e., data is lost after the power is turned off). Most

microcontrollers have some amount of internal RAM, 256 bytes being a common

amount, although some microcontrollers have more, some less. The PIC18F452

microcontroller, for example, has 1536 bytes of RAM. Memory can usually be extended

by adding external memory chips.

1.2.2 ROM

ROM, read only memory, usually holds program or fixed user data. ROM is

nonvolatile. If power is removed from ROM and then reapplied, the original data

will still be there. ROM memory is programmed during the manufacturing process,

and the user cannot change its contents. ROM memory is only useful if you have

developed a program and wish to create several thousand copies of it.

1.2.3 PROM

PROM, programmable read only memory, is a type of ROM that can be

programmed in the field, often by the end user, using a device called a PROM

programmer. Once a PROM has been programmed, its contents cannot be changed.

PROMs are usually used in low production applications where only a few such

memories are required.

www.newnespress.com

5Microcomputer Systems

1.2.4 EPROM

EPROM, erasable programmable read only memory, is similar to ROM, but EPROM

can be programmed using a suitable programming device. An EPROM memory has a

small clear-glass window on top of the chip where the data can be erased under strong

ultraviolet light. Once the memory is programmed, the window can be covered with

dark tape to prevent accidental erasure of the data. An EPROM memory must be erased

before it can be reprogrammed. Many developmental versions of microcontrollers are

manufactured with EPROM memories where the user program can be stored. These

memories are erased and reprogrammed until the user is satisfied with the program.

Some versions of EPROMs, known as OTP (one time programmable), can be

programmed using a suitable programmer device but cannot be erased. OTP memories

cost much less than EPROMs. OTP is useful after a project has been developed

completely and many copies of the program memory must be made.

1.2.5 EEPROM

EEPROM, electrically erasable programmable read only memory, is a nonvolatile

memory that can be erased and reprogrammed using a suitable programming device.

EEPROMs are used to save configuration information, maximum and minimum values,

identification data, etc. Some microcontrollers have built-in EEPROM memories. For

instance, the PIC18F452 contains a 256-byte EEPROM memory where each byte can be

programmed and erased directly by applications software. EEPROM memories are

usually very slow. An EEPROM chip is much costlier than an EPROM chip.

1.2.6 Flash EEPROM

Flash EEPROM, a version of EEPROM memory, has become popular in microcontroller

applications and is used to store the user program. Flash EEPROM is nonvolatile and

usually very fast. The data can be erased and then reprogrammed using a suitable

programming device. Some microcontrollers have only 1K flash EEPROM while others

have 32K or more. The PIC18F452 microcontroller has 32K bytes of flash memory.

1.3 Microcontroller Features

Microcontrollers from different manufacturers have different architectures and different

capabilities. Some may suit a particular application while others may be totally

www.newnespress.com

6 Chapter 1

unsuitable for the same application. The hardware features common to most

microcontrollers are described in this section.

1.3.1 Supply Voltage

Most microcontrollers operate with the standard logic voltage of þ5V. Some

microcontrollers can operate at as low as þ2.7V, and some will tolerate þ6V without

any problem. The manufacturer’s data sheet will have information about the allowed

limits of the power supply voltage. PIC18F452 microcontrollers can operate with a

power supply of þ2V to þ5.5V.

Usually, a voltage regulator circuit is used to obtain the required power supply voltage

when the device is operated from a mains adapter or batteries. For example, a 5V

regulator is required if the microcontroller is operated from a 5V supply using a 9V

battery.

1.3.2 The Clock

All microcontrollers require a clock (or an oscillator) to operate, usually provided by

external timing devices connected to the microcontroller. In most cases, these external

timing devices are a crystal plus two small capacitors. In some cases they are resonators

or an external resistor-capacitor pair. Some microcontrollers have built-in timing

circuits and do not require external timing components. If an application is not time-

sensitive, external or internal (if available) resistor-capacitor timing components are the

best option for their simplicity and low cost.

An instruction is executed by fetching it from the memory and then decoding it. This

usually takes several clock cycles and is known as the instruction cycle. In PIC

microcontrollers, an instruction cycle takes four clock periods. Thus the microcontroller

operates at a clock rate that is one-quarter of the actual oscillator frequency. The

PIC18F series of microcontrollers can operate with clock frequencies up to 40MHz.

1.3.3 Timers

Timers are important parts of any microcontroller. A timer is basically a counter which

is driven from either an external clock pulse or the microcontroller’s internal oscillator.

A timer can be 8 bits or 16 bits wide. Data can be loaded into a timer under program

control, and the timer can be stopped or started by program control. Most timers can be

www.newnespress.com

7Microcomputer Systems

configured to generate an interrupt when they reach a certain count (usually when they

overflow). The user program can use an interrupt to carry out accurate timing-related

operations inside the microcontroller. Microcontrollers in the PIC18F series have at

least three timers. For example, the PIC18F452 microcontroller has three built-in

timers.

Some microcontrollers offer capture and compare facilities, where a timer value can be

read when an external event occurs, or the timer value can be compared to a preset

value, and an interrupt is generated when this value is reached. Most PIC18F

microcontrollers have at least two capture and compare modules.

1.3.4 Watchdog

Most microcontrollers have at least one watchdog facility. The watchdog is basically a

timer that is refreshed by the user program. Whenever the program fails to refresh

the watchdog, a reset occurs. The watchdog timer is used to detect a system problem,

such as the program being in an endless loop. This safety feature prevents runaway

software and stops the microcontroller from executing meaningless and unwanted

code. Watchdog facilities are commonly used in real-time systems where the

successful termination of one or more activities must be checked regularly.

1.3.5 Reset Input

A reset input is used to reset a microcontroller externally. Resetting puts the

microcontroller into a known state such that the program execution starts from address

0 of the program memory. An external reset action is usually achieved by connecting

a push-button switch to the reset input. When the switch is pressed, the microcontroller

is reset.

1.3.6 Interrupts

Interrupts are an important concept in microcontrollers. An interrupt causes the

microcontroller to respond to external and internal (e.g., a timer) events very quickly.

When an interrupt occurs, the microcontroller leaves its normal flow of program

execution and jumps to a special part of the program known as the interrupt service

routine (ISR). The program code inside the ISR is executed, and upon return from the

ISR the program resumes its normal flow of execution.

www.newnespress.com

8 Chapter 1

The ISR starts from a fixed address of the program memory sometimes known as the

interrupt vector address. Some microcontrollers with multi-interrupt features have just

one interrupt vector address, while others have unique interrupt vector addresses, one

for each interrupt source. Interrupts can be nested such that a new interrupt can suspend

the execution of another interrupt. Another important feature of multi-interrupt

capability is that different interrupt sources can be assigned different levels of priority.

For example, the PIC18F series of microcontrollers has both low-priority and high-

priority interrupt levels.

1.3.7 Brown-out Detector

Brown-out detectors, which are common in many microcontrollers, reset the

microcontroller if the supply voltage falls below a nominal value. These safety features

can be employed to prevent unpredictable operation at low voltages, especially to

protect the contents of EEPROM-type memories.

1.3.8 Analog-to-Digital Converter

An analog-to-digital converter (A/D) is used to convert an analog signal, such as

voltage, to digital form so a microcontroller can read and process it. Some

microcontrollers have built-in A/D converters. External A/D converter can also be

connected to any type of microcontroller. A/D converters are usually 8 to 10 bits,

having 256 to 1024 quantization levels. Most PIC microcontrollers with A/D features

have multiplexed A/D converters which provide more than one analog input channel.

For example, the PIC18F452 microcontroller has 10-bit 8-channel A/D converters.

The A/D conversion process must be started by the user program and may take several

hundred microseconds to complete. A/D converters usually generate interrupts when a

conversion is complete so the user program can read the converted data quickly.

A/D converters are especially useful in control and monitoring applications, since most

sensors (e.g., temperature sensors, pressure sensors, force sensors, etc.) produce analog

output voltages.

1.3.9 Serial Input-Output

Serial communication (also called RS232 communication) enables a microcontroller

to be connected to another microcontroller or to a PC using a serial cable. Some

www.newnespress.com

9Microcomputer Systems

microcontrollers have built-in hardware called USART (universal synchronous-

asynchronous receiver-transmitter) to implement a serial communication interface.

The user program can usually select the baud rate and data format. If no serial

input-output hardware is provided, it is easy to develop software to implement serial

data communication using any I/O pin of a microcontroller. The PIC18F series of

microcontrollers has built-in USART modules. We shall see in Chapter 6 how to write

mikroC programs to implement serial communicationwith andwithout aUSARTmodule.

Some microcontrollers (e.g., the PIC18F series) incorporate SPI (serial peripheral

interface) or I2C (integrated interconnect) hardware bus interfaces. These enable a

microcontroller to interface with other compatible devices easily.

1.3.10 EEPROM Data Memory

EEPROM-type data memory is also very common in many microcontrollers. The

advantage of an EEPROM memory is that the programmer can store nonvolatile data

there and change this data whenever required. For example, in a temperature monitoring

application, the maximum and minimum temperature readings can be stored in an

EEPROMmemory. If the power supply is removed for any reason, the values of the latest

readings are available in the EEPROMmemory. The PIC18F452 microcontroller has 256

bytes of EEPROM memory. Other members of the PIC18F family have more EEPROM

memory (e.g., the PIC18F6680 has 1024 bytes). The mikroC language provides special

instructions for reading and writing to the EEPROM memory of a PIC microcontroller.

1.3.11 LCD Drivers

LCD drivers enable a microcontroller to be connected to an external LCD display

directly. These drivers are not common since most of the functions they provide can be

implemented in software. For example, the PIC18F6490 microcontroller has a built-in

LCD driver module.

1.3.12 Analog Comparator

Analog comparators are used where two analog voltages need to be compared.

Although these circuits are implemented in most high-end PIC microcontrollers, they

are not common in other microcontrollers. The PIC18F series of microcontrollers has

built-in analog comparator modules.

www.newnespress.com

10 Chapter 1

1.3.13 Real-time Clock

A real-time clock enables a microcontroller to receive absolute date and time

information continuously. Built-in real-time clocks are not common in most

microcontrollers, since the same function can easily be implemented by either a

dedicated real-time clock chip or a program written for this purpose.

1.3.14 Sleep Mode

Some microcontrollers (e.g., PICs) offer built-in sleep modes, where executing this

instruction stops the internal oscillator and reduces power consumption to an extremely

low level. The sleep mode’s main purpose is to conserve battery power when the

microcontroller is not doing anything useful. The microcontroller is usually woken up

from sleep mode by an external reset or a watchdog time-out.

1.3.15 Power-on Reset

Some microcontrollers (e.g., PICs) have built-in power-on reset circuits which keep the

microcontroller in the reset state until all the internal circuitry has been initialized. This

feature is very useful, as it starts the microcontroller from a known state on power-up.

An external reset can also be provided, where the microcontroller is reset when an

external button is pressed.

1.3.16 Low-Power Operation

Low-power operation is especially important in portable applications where

microcontroller-based equipment is operated from batteries. Some microcontrollers

(e.g., PICs) can operate with less than 2mA with a 5V supply, and around 15mA at a 3V

supply. Other microcontrollers, especially microprocessor-based systems with several

chips, may consume several hundred milliamperes or even more.

1.3.17 Current Sink/Source Capability

Current sink/source capability is important if the microcontroller is to be connected

to an external device that might draw a large amount of current to operate. PIC

microcontrollers can source and sink 25mA of current from each output port pin. This

current is usually sufficient to drive LEDs, small lamps, buzzers, small relays, etc. The

www.newnespress.com

11Microcomputer Systems

current capability can be increased by connecting external transistor switching circuits

or relays to the output port pins.

1.3.18 USB Interface

USB is currently a very popular computer interface specification used to connect

various peripheral devices to computers and microcontrollers. Some PIC

microcontrollers provide built-in USB modules. The PIC18F2x50, for example,

has built-in USB interface capabilities.

1.3.19 Motor Control Interface

Some PIC microcontrollers, for example the PIC18F2x31, provide motor control

interface capability.

1.3.20 CAN Interface

CAN bus is a very popular bus system used mainly in automation applications. Some

PIC18F-series microcontrollers (e.g., the PIC18F4680) provide CAN interface

capability.

1.3.21 Ethernet Interface

Some PIC microcontrollers (e.g., the PIC18F97J60) provide Ethernet interface

capabilities and thus are easily used in network-based applications.

1.3.22 ZigBee Interface

ZigBee, an interface similar to Bluetooth, is used in low-cost wireless home automation

applications. Some PIC18F-series microcontrollers provide ZigBee interface

capabilities, making the design of such wireless systems very easy.

1.4 Microcontroller Architectures

Two types of architectures are conventional in microcontrollers (see Figure 1.4).

Von Neumann architecture, used by a large percentage of microcontrollers, places

all memory space on the same bus; instruction and data also use the same bus.

www.newnespress.com

12 Chapter 1

In Harvard architecture (used by PIC microcontrollers), code and data are on

separate buses, which allows them to be fetched simultaneously, resulting in an

improved performance.

1.4.1 RISC and CISC

RISC (reduced instruction set computer) and CISC (complex instruction computer)

refer to the instruction set of a microcontroller. In an 8-bit RISC microcontroller,

data is 8 bits wide but the instruction words are more than 8 bits wide (usually

12, 14, or 16 bits) and the instructions occupy one word in the program memory.

Thus the instructions are fetched and executed in one cycle, which improves

performance.

In a CISC microcontroller, both data and instructions are 8 bits wide. CISC

microcontrollers usually have over two hundred instructions. Data and code are on the

same bus and cannot be fetched simultaneously.

1.5 Number Systems

To use a microprocessor or microcontroller efficiently requires a working knowledge

of binary, decimal, and hexadecimal numbering systems. This section provides

background information about these numbering systems for readers who are unfamiliar

with them or do not know how to convert from one number system to another.

Number systems are classified according to their bases. The numbering system used in

everyday life is base 10, or the decimal number system. The numbering system most

CPU Data
memory

Program
memory

CPU
Program
memory

Von Neumann architecture Harvard architecture a) b)

Figure 1.4: Von Neumann and Harvard architectures

www.newnespress.com

13Microcomputer Systems

commonly used in microprocessor and microcontroller applications is base 16,

or hexadecimal. Base 2, or binary, and base 8, or octal, number systems are

also used.

1.5.1 Decimal Number System

The numbers in the decimal number system, of course, are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The

subscript 10 indicates that a number is in decimal format. For example, the decimal

number 235 is shown as 23510.

In general, a decimal number is represented as follows:

an � 10n þ an�1 � 10n�1 þ an�2 � 10n�2 þ ::::::::: þ a0 � 100

For example, decimal number 82510 can be shown as:

82510 ¼ 8 � 102 þ 2 � 101 þ 5 � 100

Similarly, decimal number 2610 can be shown as:

2610 ¼ 2 � 101 þ 6 � 100

or

335910 ¼ 3 � 103 þ 3 � 102 þ 5 � 101 þ 9 � 100

1.5.2 Binary Number System

The binary number system consists of two numbers: 0 and 1. A subscript 2 indicates that a

number is in binary format. For example, the binary number 1011 would be 10112.

In general, a binary number is represented as follows:

an � 2n þ an�1 � 2n�1 þ an�2 � 2n�2 þ ::::::::: þ a0 � 20

For example, binary number 11102 can be shown as:

11102 ¼ 1 � 23 þ 1 � 22 þ 1 � 21 þ 0 � 20

www.newnespress.com

14 Chapter 1

Similarly, binary number 100011102 can be shown as:

100011102 ¼ 1 � 27 þ 0 � 26 þ 0 � 25 þ 0 � 24 þ 1 � 23

þ 1 � 22 þ 1 � 21 þ 0 � 20

1.5.3 Octal Number System

In the octal number system, the valid numbers are 0, 1, 2, 3, 4, 5, 6, 7. A subscript

8 indicates that a number is in octal format. For example, the octal number 23 appears

as 238.

In general, an octal number is represented as:

an � 8n þ an�1 � 8n�1 þ an�2 � 8n�2 þ ::::::::: þ a0 � 80

For example, octal number 2378 can be shown as:

2378 ¼ 2 � 82 þ 3 � 81 þ 7 � 80

Similarly, octal number 17778 can be shown as:

17778 ¼ 1 � 83 þ 7 � 82 þ 7 � 81 þ 7 � 80

1.5.4 Hexadecimal Number System

In the hexadecimal number system, the valid numbers are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,

B, C, D, E, F. A subscript 16 or subscript H indicates that a number is in hexadecimal

format. For example, hexadecimal number 1F can be written as 1F16 or as 1FH.

In general, a hexadecimal number is represented as:

an � 16n þ an�1 � 16n�1 þ an�2 � 16n�2 þ ::::::::: þ a0 � 160

For example, hexadecimal number 2AC16 can be shown as:

2AC16 ¼ 2 � 162 þ 10 � 161 þ 12 � 160

Similarly, hexadecimal number 3FFE16 can be shown as:

3FFE16 ¼ 3 � 163 þ 15 � 162 þ 15 � 161 þ 14 � 160

www.newnespress.com

15Microcomputer Systems

1.6 Converting Binary Numbers into Decimal

To convert a binary number into decimal, write the number as the sum of the powers of 2.

Example 1.1

Convert binary number 10112 into decimal.

Solution 1.1

Write the number as the sum of the powers of 2:

10112 ¼ 1 � 23 þ 0 � 22 þ 1 � 21 þ 1 � 20

¼ 8 þ 0 þ 2 þ 1

¼ 11

or; 10112 ¼ 1110

Example 1.2

Convert binary number 110011102 into decimal.

Solution 1.2

Write the number as the sum of the powers of 2:

110011102 ¼ 1 � 27 þ 1 � 26 þ 0 � 25 þ 0 � 24

þ 1 � 23 þ 1 � 22 þ 1 � 21 þ 0 � 20

¼ 128 þ 64 þ 0 þ 0 þ 8 þ 4 þ 2 þ 0

¼ 206

or; 110011102 ¼ 20610

Table 1.1 shows the decimal equivalent of numbers from 0 to 31.

1.7 Converting Decimal Numbers into Binary

To convert a decimal number into binary, divide the number repeatedly by 2 and take

the remainders. The first remainder is the least significant digit (LSD), and the last

remainder is the most significant digit (MSD).

Example 1.3

Convert decimal number 2810 into binary.

www.newnespress.com

16 Chapter 1

Solution 1.3

Divide the number into 2 repeatedly and take the remainders:

28/2 ! 14 Remainder 0 (LSD)
14/2 ! 7 Remainder 0
7/2 ! 3 Remainder 1
3/2 ! 1 Remainder 1
1/2 ! 0 Remeinder 1 (MSD)

The binary number is 111002.

Table 1.1: Decimal equivalent of
binary numbers

Binary Decimal Binary Decimal

00000000 0 00010000 16

00000001 1 00010001 17

00000010 2 00010010 18

00000011 3 00010011 19

00000100 4 00010100 20

00000101 5 00010101 21

00000110 6 00010110 22

00000111 7 00010111 23

00001000 8 00011000 24

00001001 9 00011001 25

00001010 10 00011010 26

00001011 11 00011011 27

00001100 12 00011100 28

00001101 13 00011101 29

00001110 14 00011110 30

00001111 15 00011111 31

www.newnespress.com

17Microcomputer Systems

Example 1.4

Convert decimal number 6510 into binary.

Solution 1.4

Divide the number into 2 repeatedly and take the remainders:

65/2 ! 32 Remainder 1 (LSD)
32/2 ! 16 Remainder 0
16/2 ! 8 Remainder 0
8/2 ! 4 Remainder 0
4/2 ! 2 Remainder 0
2/2 ! 1 Remainder 0
1/2 ! 0 Remainder 1 (MSD)

The binary number is 10000012.

Example 1.5

Convert decimal number 12210 into binary.

Solution 1.5

Divide the number into 2 repeatedly and take the remainders:

122/2 ! 61 Remainder 0 (LSD)
61/2 ! 30 Remainder 1
30/2 ! 15 Remainder 0
15/2 ! 7 Remainder 1
7/2 ! 3 Remainder 1
3/2 ! 1 Remainder 1
1/2 ! 0 Remainder 1 (MSD)

The binary number is 11110102.

1.8 Converting Binary Numbers into Hexadecimal

To convert a binary number into hexadecimal, arrange the number in groups of four and

find the hexadecimal equivalent of each group. If the number cannot be divided exactly

into groups of four, insert zeros to the left of the number as needed so the number of

digits are divisible by four.

www.newnespress.com

18 Chapter 1

Example 1.6

Convert binary number 100111112 into hexadecimal.

Solution 1.6

First, divide the number into groups of four, then find the hexadecimal equivalent of

each group:

10011111 = 1001 1111
9 F

The hexadecimal number is 9F16.

Example 1.7

Convert binary number 11101111000011102 into hexadecimal.

Solution 1.7

First, divide the number into groups of four, then find the hexadecimal equivalent of

each group:

1110111100001110 = 1110 1111 0000 1110
E F 0 E

The hexadecimal number is EF0E16.

Example 1.8

Convert binary number 1111102 into hexadecimal.

Solution 1.8

Since the number cannot be divided exactly into groups of four, we have to insert, in

this case, two zeros to the left of the number so the number of digits is divisible by four:

111110 = 0011 1110
3 E

The hexadecimal number is 3E16.

Table 1.2 shows the hexadecimal equivalent of numbers 0 to 31.

www.newnespress.com

19Microcomputer Systems

1.9 Converting Hexadecimal Numbers into Binary

To convert a hexadecimal number into binary, write the 4-bit binary equivalent of each

hexadecimal digit.

Example 1.9

Convert hexadecimal number A916 into binary.

Table 1.2: Hexadecimal equivalent of
decimal numbers

Decimal Hexadecimal Decimal Hexadecimal

0 0 16 10

1 1 17 11

2 2 18 12

3 3 19 13

4 4 20 14

5 5 21 15

6 6 22 16

7 7 23 17

8 8 24 18

9 9 25 19

10 A 26 1A

11 B 27 1B

12 C 28 1C

13 D 29 1D

14 E 30 1E

15 F 31 1F

www.newnespress.com

20 Chapter 1

Solution 1.9

Writing the binary equivalent of each hexadecimal digit:

A = 10102 9 = 10012

The binary number is 101010012.

Example 1.10

Convert hexadecimal number FE3C16 into binary.

Solution 1.10

Writing the binary equivalent of each hexadecimal digit:

F = 11112 E = 11102 3 = 00112 C = 11002

The binary number is 11111110001111002.

1.10 Converting Hexadecimal Numbers into Decimal

To convert a hexadecimal number into decimal, calculate the sum of the powers of

16 of the number.

Example 1.11

Convert hexadecimal number 2AC16 into decimal.

Solution 1.11

Calculating the sum of the powers of 16 of the number:

2AC16 ¼ 2 � 162 þ 10 � 161 þ 12 � 160

¼ 512 þ 160 þ 12

¼ 684

The required decimal number is 68410.

Example 1.12

Convert hexadecimal number EE16 into decimal.

www.newnespress.com

21Microcomputer Systems

Solution 1.12

Calculating the sum of the powers of 16 of the number:

EE16 ¼ 14 � 161 þ 14 � 160

¼ 224 þ 14

¼ 238

The decimal number is 23810.

1.11 Converting Decimal Numbers into Hexadecimal

To convert a decimal number into hexadecimal, divide the number repeatedly by 16 and

take the remainders. The first remainder is the LSD, and the last remainder is the MSD.

Example 1.13

Convert decimal number 23810 into hexadecimal.

Solution 1.13

Dividing the number repeatedly by 16:

238/16 ! 14 Remainder 14 (E) (LSD)
14/16 ! 0 Remainder 14 (E) (MSD)

The hexadecimal number is EE16.

Example 1.14

Convert decimal number 68410 into hexadecimal.

Solution 1.14

Dividing the number repeatedly by 16:

684/16 ! 42 Remainder 12 (C) (LSD)
42/16 ! 2 Remainder 10 (A)
2/16 ! 0 Remainder 2 (MSD)

The hexadecimal number is 2AC16.

www.newnespress.com

22 Chapter 1

1.12 Converting Octal Numbers into Decimal

To convert an octal number into decimal, calculate the sum of the powers of 8 of the

number.

Example 1.15

Convert octal number 158 into decimal.

Solution 1.15

Calculating the sum of the powers of 8 of the number:

158 ¼ 1 � 81 þ 5 � 80

¼ 8 þ 5

¼ 13

The decimal number is 1310.

Example 1.16

Convert octal number 2378 into decimal.

Solution 1.16

Calculating the sum of the powers of 8 of the number:

2378 ¼ 2 � 82 þ 3 � 81 þ 7 � 80

¼ 128 þ 24 þ 7

¼ 159

The decimal number is 15910.

1.13 Converting Decimal Numbers into Octal

To convert a decimal number into octal, divide the number repeatedly by 8 and take the

remainders. The first remainder is the LSD, and the last remainder is

the MSD.

Example 1.17

Convert decimal number 15910 into octal.

www.newnespress.com

23Microcomputer Systems

Solution 1.17

Dividing the number repeatedly by 8:

159/8 ! 19 Remainder 7 (LSD)
19/8 ! 2 Remainder 3
2/8 ! 0 Remainder 2 (MSD)

The octal number is 2378.

Example 1.18

Convert decimal number 46010 into octal.

Solution 1.18

Dividing the number repeatedly by 8:

460/8 ! 57 Remainder 4 (LSD)
57/8 ! 7 Remainder 1
7/8 ! 0 Remainder 7 (MSD)

The octal number is 7148.

Table 1.3 shows the octal equivalent of decimal numbers 0 to 31.

1.14 Converting Octal Numbers into Binary

To convert an octal number into binary, write the 3-bit binary equivalent of each

octal digit.

Example 1.19

Convert octal number 1778 into binary.

Solution 1.19

Write the binary equivalent of each octal digit:

1 = 0012 7 = 1112 7 = 1112

The binary number is 0011111112.

www.newnespress.com

24 Chapter 1

Example 1.20

Convert octal number 758 into binary.

Solution 1.20

Write the binary equivalent of each octal digit:

7 = 1112 5 = 1012

The binary number is 1111012.

Table 1.3: Octal equivalent of decimal numbers

Decimal Octal Decimal Octal

0 0 16 20

1 1 17 21

2 2 18 22

3 3 19 23

4 4 20 24

5 5 21 25

6 6 22 26

7 7 23 27

8 10 24 30

9 11 25 31

10 12 26 32

11 13 27 33

12 14 28 34

13 15 29 35

14 16 30 36

15 17 31 37

www.newnespress.com

25Microcomputer Systems

1.15 Converting Binary Numbers into Octal

To convert a binary number into octal, arrange the number in groups of three and write

the octal equivalent of each digit.

Example 1.21

Convert binary number 1101110012 into octal.

Solution 1.21

Arranging in groups of three:

110111001 = 110 111 001
6 7 1

The octal number is 6718.

1.16 Negative Numbers

The most significant bit of a binary number is usually used as the sign bit. By

convention, for positive numbers this bit is 0, and for negative numbers this bit is 1.

Figure 1.5 shows the 4-bit positive and negative numbers. The largest positive and

negative numbers are þ7 and �8 respectively.

+5
+4
+3
+2
+1

0
−1
−2
−3
−4
−5
−6
 −7
−8

0111 +7
0110 +6
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
1000

Decimal equivalent Binary number

Figure 1.5: 4-bit positive and negative numbers

www.newnespress.com

26 Chapter 1

To convert a positive number to negative, take the complement of the number

and add 1. This process is also called the 2’s complement of the

number.

Example 1.22

Write decimal number �6 as a 4-bit number.

Solution 1.22

First, write the number as a positive number, then find the complement and

add 1:

0110 þ6

1001 complement

1 add 1
––––

1010 which is �6

Example 1.23

Write decimal number �25 as a 8-bit number.

Solution 1.23

First, write the number as a positive number, then find the complement and

add 1:

00011001 þ25

11100110 complement

1 add 1
–––––––

11100111 which is �25

1.17 Adding Binary Numbers

The addition of binary numbers is similar to the addition of decimal numbers. Numbers

in each column are added together with a possible carry from a previous column. The

primitive addition operations are:

www.newnespress.com

27Microcomputer Systems

0 þ 0 = 0
0 þ 1 = 1
1 þ 0 = 1
1 þ 1 = 10 generate a carry bit
1 þ 1 þ 1 = 11 generate a carry bit

Some examples follow.

Example 1.24

Find the sum of binary numbers 011 and 110.

Solution 1.24

We can add these numbers as in the addition of decimal numbers:

011 First column: 1 þ 0 ¼ 1

þ 110 Second column: 1 þ 1 ¼ 0 and a carry bit
––––– Third column: 1 þ 1 ¼ 10

1001

Example 1.25

Find the sum of binary numbers 01000011 and 00100010.

Solution 1.25

We can add these numbers as in the addition of decimal numbers:

01000011 First column: 1 þ 0 ¼ 1

þ 00100010 Second column: 1 þ 1 ¼ 10
–––––––––- Third column: 0 þ carry ¼ 1

01100101 Fourth column: 0 þ 0 ¼ 0

Fifth column: 0 þ 0 ¼ 0

Sixth column: 0 þ 1 ¼ 1

Seventh column: 1 þ 0 ¼ 1

Eighth column: 0 þ 0 ¼ 0

www.newnespress.com

28 Chapter 1

1.18 Subtracting Binary Numbers

To subtract one binary number from another, convert the number to be subtracted into

negative and then add the two numbers.

Example 1.26

Subtract binary number 0010 from 0110.

Solution 1.26

First, convert the number to be subtracted into negative:

0010 number to be subtracted

1101 complement

1 add 1
––––

1110

Now add the two numbers:

0110
þ 1110
––––––

0100

Since we are using only 4 bits, we cannot show the carry bit.

1.19 Multiplication of Binary Numbers

Multiplication of two binary numbers is similar to the multiplication of two decimal

numbers. The four possibilities are:

0 � 0 ¼ 0

0 � 1 ¼ 0

1 � 0 ¼ 0

1 � 1 ¼ 1

Some examples follow.

www.newnespress.com

29Microcomputer Systems

Example 1.27

Multiply the two binary numbers 0110 and 0010.

Solution 1.27

Multiplying the numbers:

0110

0010
-- -- -- --

0000

0110

0000

0000
-- -- -- -- -- --

001100 or 1100

In this example 4 bits are needed to show the final result.

Example 1.28

Multiply binary numbers 1001 and 1010.

Solution 1.28

Multiplying the numbers:

1001

1010
-- -- -- --
0000

1001

0000

1001
-- -- -- -- -- --

1011010

In this example 7 bits are required to show the final result.

www.newnespress.com

30 Chapter 1

1.20 Division of Binary Numbers

Division with binary numbers is similar to division with decimal numbers. An example

follows.

Example 1.29

Divide binary number 1110 into binary number 10.

Solution 1.29

Dividing the numbers:

111

10 j―――
1110
10
-- -- -- --

11

10
-- -- -- --

10

10
-- -- -- --

00

gives the result 1112.

1.21 Floating Point Numbers

Floating point numbers are used to represent noninteger fractional numbers, for

example, 3.256, 2.1, 0.0036, and so forth. Floating point numbers are used in most

engineering and technical calculations. The most common floating point standard is the

IEEE standard, according to which floating point numbers are represented with 32 bits

(single precision) or 64 bits (double precision).

In this section we are looking at the format of 32-bit floating point numbers only and

seeing how mathematical operations can be performed with such numbers.

www.newnespress.com

31Microcomputer Systems

According to the IEEE standard, 32-bit floating point numbers are represented as:

31 30 23 22 0

X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX

" " "
sign exponent mantissa

The most significant bit indicates the sign of the number, where 0 indicates the number

is positive, and 1 indicates it is negative.

The 8-bit exponent shows the power of the number. To make the calculations easy,

the sign of the exponent is not shown; instead, the excess-128 numbering system

is used. Thus, to find the real exponent we have to subtract 127 from the given

exponent. For example, if the mantissa is “10000000,” the real value of the mantissa

is 128 – 127 ¼ 1.

The mantissa is 23 bits wide and represents the increasing negative powers of 2. For

example, if we assume that the mantissa is “1110000000000000000000,” the value of

this mantissa is calculated as 2�1 þ 2�2 þ 2�3 ¼ 7/8.

The decimal equivalent of a floating point number can be calculated using the

formula:

Number ¼ �1ð Þs 2e�127 1:f

where

s ¼ 0 for positive numbers, 1 for negative numbers

e ¼ exponent (between 0 and 255)

f ¼ mantissa

As shown in this formula, there is a hidden 1 in front of the mantissa (i.e, the mantissa is

shown as 1.f).

The largest number in 32-bit floating point format is:

0 11111110 11111111111111111111111

This number is (2 – 2�23) 2127 or decimal 3.403 � 1038. The numbers keep their

precision up to 6 digits after the decimal point.

www.newnespress.com

32 Chapter 1

The smallest number in 32-bit floating point format is:

0 00000001 00000000000000000000000

This number is 2�126 or decimal 1.175 � 10�38.

1.22 Converting a Floating Point Number into Decimal

To convert a given floating point number into decimal, we have to find the mantissa and

the exponent of the number and then convert into decimal as just shown.

Some examples are given here.

Example 1.30

Find the decimal equivalent of the floating point number: 0 10000001

10000000000000000000000

Solution 1.30

Here

sign = positive
exponent = 129 – 127 = 2
mantissa = 2-1 = 0.5

The decimal equivalent of this number is þ1.5 � 22 ¼ þ6.0.

Example 1.31

Find the decimal equivalent of the floating point number: 0 10000010

11000000000000000000

Solution 1.31

In this example,

sign = positive
exponent = 130 – 127 = 3
mantissa = 2-1 þ 2-2 = 0.75

The decimal equivalent of the number is þ1.75 � 23 ¼ 14.0.

www.newnespress.com

33Microcomputer Systems

1.22.1 Normalizing Floating Point Numbers

Floating point numbers are usually shown in normalized form. A normalized number

has only one digit before the decimal point (a hidden number 1 is assumed before the

decimal point).

To normalize a given floating point number, we have to move the decimal point

repeatedly one digit to the left and increase the exponent after each move.

Some examples follow.

Example 1.32

Normalize the floating point number 123.56

Solution 1.32

If we write the number with a single digit before the decimal point we get:

1.2356 x 102

Example 1.33

Normalize the binary number 1011.12

Solution 1.33

If we write the number with a single digit before the decimal point we get:

1.0111 x 23

1.22.2 Converting a Decimal Number into Floating Point

To convert a given decimal number into floating point, carry out the following steps:

� Write the number in binary.

� Normalize the number.

� Find the mantissa and the exponent.

� Write the number as a floating point number.

Some examples follow:

www.newnespress.com

34 Chapter 1

Example 1.34

Convert decimal number 2.2510 into floating point.

Solution 1.34

Write the number in binary:

2:2510 ¼ 10:012

Normalize the number:

10:012 ¼ 1:0012 � 21

Here, s ¼ 0, e – 127 ¼ 1 or e ¼ 128, and f ¼ 00100000000000000000000.

(Remember that a number 1 is assumed on the left side, even though it is not shown in

the calculation). The required floating point number can be written as:

s e f
0 10000000 (1)001 0000 0000 0000 0000 0000

or, the required 32-bit floating point number is:

01000000000100000000000000000000

Example 1.35

Convert the decimal number 134.062510 into floating point.

Solution 1.35

Write the number in binary:

134.062510 = 10000110.0001

Normalize the number:

10000110.0001 = 1.00001100001 x 27

Here, s ¼ 0, e – 127 ¼ 7 or e ¼ 134, and f ¼ 00001100001000000000000.

www.newnespress.com

35Microcomputer Systems

The required floating point number can be written as:

s e f
0 10000110 (1)00001100001000000000000

or, the required 32-bit floating point number is:

01000011000001100001000000000000

1.22.3 Multiplication and Division of Floating Point Numbers

Multiplication and division of floating point numbers are rather easy. Here are the steps:

� Add (or subtract) the exponents of the numbers.

� Multiply (or divide) the mantissa of the numbers.

� Correct the exponent.

� Normalize the number.

� The sign of the result is the EXOR of the signs of the two numbers.

Since the exponent is processed twice in the calculations, we have to subtract 127 from

the exponent.

An example showing the multiplication of two floating point numbers follows.

Example 1.36

Show the decimal numbers 0.510 and 0.7510 in floating point and then calculate their

multiplication.

Solution 1.36

Convert the numbers into floating point as:

0.510 = 1.0000 x 2-1

here, s = 0, e – 127 = -1 or e = 126 and f = 0000
or,

0.510 = 0 01110110 (1)000 0000 0000 0000 0000 0000
Similarly,

0.7510 = 1.1000 x 2-1

www.newnespress.com

36 Chapter 1

here, s = 0, e = 126 and f = 1000
or,

0.7510 = 0 01110110 (1)100 0000 0000 0000 0000 0000

Multiplying the mantissas results in “(1)100 0000 0000 0000 0000 0000.” The sum

of the exponents is 126 þ 126 ¼ 252. Subtracting 127 from the mantissa, we obtain

252 – 127 ¼ 125. The EXOR of the signs of the numbers is 0. Thus, the result can

be shown in floating point as:

0 01111101 (1)100 0000 0000 0000 0000 0000

This number is equivalent to decimal 0.375 (0.5 � 0.75 ¼ 0.375), which is the correct

result.

1.22.4 Addition and Subtraction of Floating Point Numbers

The exponents of floating point numbers must be the same before they can be added or

subtracted. The steps to add or subtract floating point numbers are:

� Shift the smaller number to the right until the exponents of both numbers are the

same. Increment the exponent of the smaller number after each shift.

� Add (or subtract) the mantissa of each number as an integer calculation, without

considering the decimal points.

� Normalize the result.

An example follows.

Example 1.37

Show decimal numbers 0.510 and 0.7510 in floating point and then calculate the sum of

these numbers.

Solution 1.37

As shown in Example 1.36, we can convert the numbers into floating point as:

0.510 = 0 01110110 (1)000 0000 0000 0000 0000 0000

www.newnespress.com

37Microcomputer Systems

Similarly,
0.7510 = 0 01110110 (1)100 0000 0000 0000 0000 0000

Since the exponents of both numbers are the same, there is no need to shift the smaller

number. If we add the mantissa of the numbers without considering the decimal points,

we get:

(1)000 0000 0000 0000 0000 0000
(1)100 0000 0000 0000 0000 0000

þ
(10)100 0000 0000 0000 0000 0000

To normalize the number, shift it right by one digit and then increment its exponent.

The resulting number is:

0 01111111 (1)010 0000 0000 0000 0000 0000

This floating point number is equal to decimal number 1.25, which is the sum of

decimal numbers 0.5 and 0.75.

A program for converting floating point numbers into decimal, and decimal numbers

into floating point, is available for free on the following web site:

http://babbage.cs.qc.edu/courses/cs341/IEEE-754.html

1.23 BCD Numbers

BCD (binary coded decimal) numbers are usually used in display systems such as LCDs

and 7-segment displays to show numeric values. In BCD, each digit is a 4-bit number

from 0 to 9. As an example, Table 1.4 shows the BCD numbers between 0 and 20.

Example 1.38

Write the decimal number 295 as a BCD number.

Solution 1.38

Write the 4-bit binary equivalent of each digit:

2 = 00102 9 = 10012 5 = 01012

The BCD number is 0010 1001 01012.

www.newnespress.com

38 Chapter 1

Table 1.4: BCD numbers between 0 and 20

Decimal BCD Binary

0 0000 0000

1 0001 0001

2 0010 0010

3 0011 0011

4 0100 0100

5 0101 0101

6 0110 0110

7 0111 0111

8 1000 1000

9 1001 1001

10 0001 0000 1010

11 0001 0001 1011

12 0001 0010 1100

13 0001 0011 1101

14 0001 0100 1110

15 0001 0101 1111

16 0001 0110 1 0000

17 0001 0111 1 0001

18 0001 1000 1 0010

19 0001 1001 1 0011

20 0010 0000 1 0100

www.newnespress.com

39Microcomputer Systems

Example 1.39

Write the decimal equivalent of BCD number 1001 1001 0110 00012.

Solution 1.39

Writing the decimal equivalent of each group of 4-bit yields the decimal number:

9961

1.24 Summary

Chapter 1 has provided an introduction to the microprocessor and microcontroller

systems. The basic building blocks of microcontrollers were described briefly.

The chapter also provided an introduction to various number systems, and

described how to convert a given number from one base into another.

The important topics of floating point numbers and floating point arithmetic

were also described with examples.

1.25 Exercises

1. What is a microcontroller? What is a microprocessor? Explain the main difference

between a microprocessor and a microcontroller.

2. Identify some applications of microcontrollers around you.

3. Where would you use an EPROM memory?

4. Where would you use a RAM memory?

5. Explain the types of memory usually used in microcontrollers.

6. What is an input-output port?

7. What is an analog-to-digital converter? Give an example of how this converter is

used.

8. Explain why a watchdog timer could be useful in a real-time system.

9. What is serial input-output? Where would you use serial communication?

10. Why is the current sink/source capability important in the specification of an

output port pin?

www.newnespress.com

40 Chapter 1

11. What is an interrupt? Explain what happens when an interrupt is recognized by a

microcontroller?

12. Why is brown-out detection important in real-time systems?

13. Explain the difference between an RISC-based microcontroller and a CISC-based

microcontroller. What type of microcontroller is PIC?

14. Convert the following decimal numbers into binary:

a) 23 b) 128 c) 255 d) 1023

e) 120 f) 32000 g) 160 h) 250

15. Convert the following binary numbers into decimal:

a) 1111 b) 0110 c) 11110000

d) 00001111 e) 10101010 f) 10000000

16. Convert the following octal numbers into decimal:

a) 177 b) 762 c) 777 d) 123

e) 1777 f) 655 g) 177777 h) 207

17. Convert the following decimal numbers into octal:

a) 255 b) 1024 c) 129 d) 2450

e) 4096 f) 256 g) 180 h) 4096

18. Convert the following hexadecimal numbers into decimal:

a) AA b) EF c) 1FF d) FFFF

e) 1AA f) FEF g) F0 h) CC

19. Convert the following binary numbers into hexadecimal:

a) 0101 b) 11111111 c) 1111 d) 1010

e) 1110 f) 10011111 g) 1001 h) 1100

20. Convert the following binary numbers into octal:

a) 111000 b) 000111 c) 1111111 d) 010111

e) 110001 f) 11111111 g) 1000001 h) 110000

www.newnespress.com

41Microcomputer Systems

21. Convert the following octal numbers into binary:

a) 177 b) 7777 c) 555 d) 111

e) 1777777 f) 55571 g) 171 h) 1777

22. Convert the following hexadecimal numbers into octal:

a) AA b) FF c) FFFF d) 1AC

e) CC f) EE g) EEFF h) AB

23. Convert the following octal numbers into hexadecimal:

a) 177 b) 777 c) 123 d) 23

e) 1111 f) 17777777 g) 349 h) 17

24. Convert the following decimal numbers into floating point:

a) 23.45 b) 1.25 c) 45.86 d) 0.56

25. Convert the following decimal numbers into floating point and then calculate

their sum:

0.255 and 1.75

26. Convert the following decimal numbers into floating point and then calculate

their product:

2.125 and 3.75

27. Convert the following decimal numbers into BCD:

a) 128 b) 970 c) 900 d) 125

www.newnespress.com

42 Chapter 1

CHAP T E R 2

PIC18F Microcontroller Series

PIC16-series microcontrollers have been around for many years. Although these are

excellent general purpose microcontrollers, they have certain limitations. For example,

the program and data memory capacities are limited, the stack is small, and the interrupt

structure is primitive, all interrupt sources sharing the same interrupt vector. PIC16-

series microcontrollers also do not provide direct support for advanced peripheral

interfaces such as USB, CAN bus, etc., and interfacing with such devices is not easy.

The instruction set for these microcontrollers is also limited. For example, there are no

multiplication or division instructions, and branching is rather simple, being a

combination of skip and goto instructions.

Microchip Inc. has developed the PIC18 series of microcontrollers for use in high-pin-

count, high-density, and complex applications. The PIC18F microcontrollers offer cost-

efficient solutions for general purpose applications written in C that use a real-time

operating system (RTOS) and require a complex communication protocol stack such as

TCP/IP, CAN, USB, or ZigBee. PIC18F devices provide flash program memory in sizes

from 8 to 128Kbytes and data memory from 256 to 4Kbytes, operating at a range of

2.0 to 5.0 volts, at speeds from DC to 40MHz.

The basic features of PIC18F-series microcontrollers are:

� 77 instructions

� PIC16 source code compatible

� Program memory addressing up to 2Mbytes

� Data memory addressing up to 4Kbytes

www.newnespress.com

� DC to 40MHz operation

� 8 � 8 hardware multiplier

� Interrupt priority levels

� 16-bit-wide instructions, 8-bit-wide data path

� Up to two 8-bit timers/counters

� Up to three 16-bit timers/counters

� Up to four external interrupts

� High current (25mA) sink/source capability

� Up to five capture/compare/PWM modules

� Master synchronous serial port module (SPI and I2C modes)

� Up to two USART modules

� Parallel slave port (PSP)

� Fast 10-bit analog-to-digital converter

� Programmable low-voltage detection (LVD) module

� Power-on reset (POR), power-up timer (PWRT), and oscillator start-up timer (OST)

� Watchdog timer (WDT) with on-chip RC oscillator

� In-circuit programming

In addition, some microcontrollers in the PIC18F family offer the following special

features:

� Direct CAN 2.0 bus interface

� Direct USB 2.0 bus interface

� Direct LCD control interface

� TCP/IP interface

� ZigBee interface

� Direct motor control interface

www.newnespress.com

44 Chapter 2

Most devices in the PIC18F family are source compatible with each other. Table 2.1

gives the characteristics of some of the popular devices in this family. This chapter

offers a detailed study of the PIC18FXX2 microcontrollers. The architectures of most of

the other microcontrollers in the PIC18F family are similar.

The reader may be familiar with the programming and applications of the PIC16F

series. Before going into the details of the PIC18F series, it is worthwhile to compare

the features of the PIC18F series with those of the PIC16F series.

The following are similarities between PIC16F and PIC18F:

� Similar packages and pinouts

� Similar special function register (SFR) names and functions

� Similar peripheral devices

Table 2.1: The 18FXX2 microcontroller family

Feature PIC18F242 PIC18F252 PIC18F442 PIC18F452

Program memory
(Bytes)

16K 32K 16K 32K

Data memory (Bytes) 768 1536 768 1536

EEPROM (Bytes) 256 256 256 256

I/O Ports A,B,C A,B,C A,B,C,D,E A,B,C,D,E

Timers 4 4 4 4

Interrupt sources 17 17 18 18

Capture/compare/PWM 2 2 2 2

Serial communication MSSP
USART

MSSP
USART

MSSP
USART

MSSP
USART

A/D converter (10-bit) 5 channels 5 channels 8 channels 8 channels

Low-voltage detect yes yes yes yes

Brown-out reset yes yes yes yes

Packages 28-pin DIP

28-pin SOIC

28-pin DIP

28-pin SOIC

40-pin DIP

44-pin PLCC

44-pin TQFP

40-pin DIP

44-pin PLCC

44-pin TQFP

www.newnespress.com

45PIC18F Microcontroller Series

� Subset of PIC18F instruction set

� Similar development tools

The following are new with the PIC18F series:

� Number of instructions doubled

� 16-bit instruction word

� Hardware 8 � 8 multiplier

� More external interrupts

� Priority-based interrupts

� Enhanced status register

� Increased program and data memory size

� Bigger stack

� Phase-locked loop (PLL) clock generator

� Enhanced input-output port architecture

� Set of configuration registers

� Higher speed of operation

� Lower power operation

2.1 PIC18FXX2 Architecture

As shown in Table 2.1, the PIC18FXX2 series consists of four devices. PIC18F2X2

microcontrollers are 28-pin devices, while PIC18F4X2 microcontrollers are 40-pin devices.

The architectures of the two groups are almost identical except that the larger devices have

more input-output ports and more A/D converter channels. In this section we shall be looking

at the architecture of the PIC18F452 microcontroller in detail. The architectures of other

standard PIC18F-series microcontrollers are similar, and the knowledge gained in this section

should be enough to understand the operation of other PIC18F-series microcontrollers.

The pin configuration of the PIC18F452 microcontroller (DIP package) is shown in

Figure 2.1. This is a 40-pin microcontroller housed in a DIL package, with a pin

configuration similar to the popular PIC16F877.

www.newnespress.com

46 Chapter 2

Figure 2.2 shows the internal block diagram of the PIC18F452 microcontroller. The

CPU is at the center of the diagram and consists of an 8-bit ALU, an 8-bit working

accumulator register (WREG), and an 8 � 8 hardware multiplier. The higher byte and

the lower byte of a multiplication are stored in two 8-bit registers called PRODH and

PRODL respectively.

The program counter and program memory are shown in the upper left portion of

the diagram. Program memory addresses consist of 21 bits, capable of accessing

2Mbytes of program memory locations. The PIC18F452 has only 32Kbytes of program

memory, which requires only 15 bits. The remaining 6 address bits are redundant and

not used. A table pointer provides access to tables and to the data stored in program

memory. The program memory contains a 31-level stack which is normally used to

store the interrupt and subroutine return addresses.

The data memory can be seen at the top center of the diagram. The data memory bus

is 12 bits wide, capable of accessing 4Kbytes of data memory locations. As we shall

see later, the data memory consists of special function registers (SFR) and general

purpose registers, all organized in banks.

Figure 2.1: PIC18F452 microcontroller DIP pin configuration

www.newnespress.com

47PIC18F Microcontroller Series

Figure 2.2: Block diagram of the PIC18F452 microcontroller

www.newnespress.com

48 Chapter 2

The bottom portion of the diagram shows the timers/counters, capture/compare/PWM

registers, USART, A/D converter, and EEPROM data memory. The PIC18F452

consists of:

� 4 timers/counters

� 2 capture/compare/PWM modules

� 2 serial communication modules

� 8 10-bit A/D converter channels

� 256 bytes EEPROM

The oscillator circuit, located at the left side of the diagram, consists of:

� Power-up timer

� Oscillator start-up timer

� Power-on reset

� Watchdog timer

� Brown-out reset

� Low-voltage programming

� In-circuit debugger

� PLL circuit

� Timing generation circuit

The PLL circuit is new to the PIC18F series and provides the option of multiplying up the

oscillator frequency to speed up the overall operation. The watchdog timer can be used to

force a restart of the microcontroller in the event of a program crash. The in-circuit

debugger is useful during program development and can be used to return diagnostic data,

including the register values, as the microcontroller is executing a program.

The input-output ports are located at the right side of the diagram. The PIC18F452

has five parallel ports named PORTA, PORTB, PORTC, PORTD, and PORTE. Most

port pins have multiple functions. For example, PORTA pins can be used as parallel

inputs-outputs or analog inputs. PORTB pins can be used as parallel inputs-outputs or

as interrupt inputs.

www.newnespress.com

49PIC18F Microcontroller Series

2.1.1 Program Memory Organization

The program memory map is shown in Figure 2.3. All PIC18F devices have a 21-bit

program counter and hence are capable of addressing 2Mbytes of memory space. User

memory space on the PIC18F452 microcontroller is 00000H to 7FFFH. Accessing a

nonexistent memory location (8000H to 1FFFFFH) will cause a read of all 0s. The reset

vector, where the program starts after a reset, is at address 0000. Addresses 0008H and

Figure 2.3: Program memory map of PIC18F452

www.newnespress.com

50 Chapter 2

0018H are reserved for the vectors of high-priority and low-priority interrupts

respectively, and interrupt service routines must be written to start at one of these

locations.

The PIC18F microcontroller has a 31-entry stack that is used to hold the return

addresses for subroutine calls and interrupt processing. The stack is not part of the

program or the data memory space. The stack is controlled by a 5-bit stack pointer

which is initialized to 00000 after a reset. During a subroutine call (or interrupt) the

stack pointer is first incremented, and the memory location it points to is written with

the contents of the program counter. During the return from a subroutine call (or

interrupt), the memory location the stack pointer has pointed to is decremented. The

projects in this book are based on using the C language. Since subroutine and interrupt

call/return operations are handled automatically by the C language compiler, their

operation is not described here in more detail.

Program memory is addressed in bytes, and instructions are stored as two bytes or four

bytes in program memory. The least significant byte of an instruction word is always

stored in an even address of the program memory.

An instruction cycle consists of four cycles: A fetch cycle begins with the program

counter incrementing in Q1. In the execution cycle, the fetched instruction is latched

into the instruction register in cycle Q1. This instruction is decoded and executed during

cycles Q2, Q3, and Q4. A data memory location is read during the Q2 cycle and written

during the Q4 cycle.

2.1.2 Data Memory Organization

The data memory map of the PIC18F452 microcontroller is shown in Figure 2.4. The

data memory address bus is 12 bits with the capability to address up to 4Mbytes.

The memory in general consists of sixteen banks, each of 256 bytes, where only 6 banks

are used. The PIC18F452 has 1536 bytes of data memory (6 banks � 256 bytes each)

occupying the lower end of the data memory. Bank switching happens automatically

when a high-level language compiler is used, and thus the user need not worry about

selecting memory banks during programming.

The special function register (SFR) occupies the upper half of the top memory bank.

SFR contains registers which control operations such as peripheral devices, timers/

counters, A/D converter, interrupts, and USART. Figure 2.5 shows the SFR registers of

the PIC18F452 microcontroller.

www.newnespress.com

51PIC18F Microcontroller Series

2.1.3 The Configuration Registers

PIC18F452 microcontrollers have a set of configuration registers (PIC16-series

microcontrollers had only one configuration register). Configuration registers

are programmed during the programming of the flash program memory by the

programming device. These registers are shown in Table 2.2. Descriptions of

Figure 2.4: The PIC18F452 data memory map

www.newnespress.com

52 Chapter 2

these registers are given in Table 2.3. Some of the more important configuration

registers are described in this section in detail.

CONFIG1H

The CONFIG1H configuration register is at address 300001H and is used to select the

microcontroller clock sources. The bit patterns are shown in Figure 2.6.

Figure 2.5: The PIC18F452 SFR registers

www.newnespress.com

53PIC18F Microcontroller Series

Table 2.2: PIC18F452 configuration registers

File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Default/
Unprogrammed
Value

300001h CONFIG1H — — OSCSEN — — FOSC2 FOSC1 FOSC0 --1- -111

300002h CONFIG2L — — — — BORV1 BORV0 BOREN PWRTEN ---- 1111

300003h CONFIG2H — — — — WDTPS2 WDTPS1 WDTPS0 WDTEN ---- 1111

300005h CONFIG3H — — — — — — — CCP2MX ---- ---1

300006h CONFIG4L DEBUG — — — — LVP — STVREN 1--- -1-1

300008h CONFIG5L — — — — CP3 CP2 CP1 CP0 ---- 1111

300009h CONFIG5H CPD CPB — — — — — — 11-- ----

30000Ah CONFIG6L — — — — WRT3 WRT2 WRT1 WRT0 ---- 1111

30000Bh CONFIG6H WRTD WRTB WRTC — — — — — 111- ----

30000Ch CONFIG7L — — — — EBTR3 EBTR2 EBTR1 EBTR0 ---- 1111

30000Dh CONFIG7H — EBTRB — — — — — — -1-- ----

3FFFFEh DEVID1 DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0 (1)

3FFFFFh DEVID2 DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 0000 0100

Legend: x ¼ unknown, u ¼ unchanged, – ¼ unimplemented, q ¼ value depends on condition. Shaded cells are unimplemented,
read as ‘0’.

w
w
w
.n

e
w
n
e
s
p
re

s
s
.c
o
m

5
4

C
h
ap

ter
2

Table 2.3: PIC18F452 configuration register descriptions

Configuration bits Description

OSCSEN Clock source switching enable

FOSC2:FOSC0 Oscillator modes

BORV1:BORV0 Brown-out reset voltage

BOREN Brown-out reset enable

PWRTEN Power-up timer enable

WDTPS2:WDTPS0 Watchdog timer postscale bits

WDTEN Watchdog timer enable

CCP2MX CCP2 multiplex

DEBUG Debug enable

LVP Low-voltage program enable

STVREN Stack full/underflow reset enable

CP3:CP0 Code protection

CPD EEPROM code protection

CPB Boot block code protection

WRT3:WRT0 Program memory write protection

WRTD EPROM write protection

WRTB Boot block write protection

WRTC Configuration register write protection

EBTR3:EBTR0 Table read protection

EBTRB Boot block table read protection

DEV2:DEV0 Device ID bits (001 = 18F452)

REV4:REV0 Revision ID bits

DEV10:DEV3 Device ID bits

www.newnespress.com

55PIC18F Microcontroller Series

CONFIG2L

The CONFIG2L configuration register is at address 300002H and is used to select the

brown-out voltage bits. The bit patterns are shown in Figure 2.7.

Figure 2.6: CONFIG1H register bits

Figure 2.7: CONFIG2L register bits

www.newnespress.com

56 Chapter 2

CONFIG2H

The CONFIG2H configuration register is at address 300003H and is used to select the

watchdog operations. The bit patterns are shown in Figure 2.8.

2.1.4 The Power Supply

The power supply requirements of the PIC18F452 microcontroller are shown in

Figure 2.9. As shown in Figure 2.10, PIC18F452 can operate with a supply voltage

of 4.2V to 5.5V at the full speed of 40MHz. The lower power version, PIC18LF452,

can operate from 2.0 to 5.5 volts. At lower voltages the maximum clock frequency is

4MHz, which rises to 40MHz at 4.2V. The RAM data retention voltage is specified as

1.5V and will be lost if the power supply voltage is lowered below this value. In

practice, most microcontroller-based systems are operated with a single þ5V supply

derived from a suitable voltage regulator.

2.1.5 The Reset

The reset action puts the microcontroller into a known state. Resetting a PIC18F

microcontroller starts execution of the program from address 0000H of the

Figure 2.8: CONFIG2H register bits

www.newnespress.com

57PIC18F Microcontroller Series

program memory. The microcontroller can be reset during one of the following

operations:

� Power-on reset (POR)

� MCLR reset

� Watchdog timer (WDT) reset

� Brown-out reset (BOR)

� Reset instruction

Figure 2.9: The PIC8F452 power supply parameters

www.newnespress.com

58 Chapter 2

� Stack full reset

� Stack underflow reset

Two types of resets are commonly used: power-on reset and external reset using the

MCLR pin.

Power-on Reset

The power-on reset is generated automatically when power supply voltage is applied to

the chip. The MCLR pin should be tied to the supply voltage directly or, preferably,

through a 10K resistor. Figure 2.11 shows a typical reset circuit.

For applications where the rise time of the voltage is slow, it is recommended to use a

diode, a capacitor, and a series resistor as shown in Figure 2.12.

In some applications the microcontroller may have to be reset externally by pressing a

button. Figure 2.13 shows the circuit that can be used to reset the microcontroller

externally. Normally the MCLR input is at logic 1. When the RESET button is pressed,

this pin goes to logic 0 and resets the microcontroller.

Figure 2.10: Operation of PIC18LF452 at different voltages

www.newnespress.com

59PIC18F Microcontroller Series

2.1.6 The Clock Sources

The PIC18F452 microcontroller can be operated from an external crystal or ceramic

resonator connected to the microcontroller’s OSC1 and OSC2 pins. In addition, an

external resistor and capacitor, an external clock source, and in some models internal

oscillators can be used to provide clock pulses to the microcontroller. There are eight

clock sources on the PIC18F452 microcontroller, selected by the configuration register

CONFIG1H. These are:

� Low-power crystal (LP)

� Crystal or ceramic resonator (XT)

Figure 2.12: Reset circuit for slow-rising voltages

Figure 2.11: Typical reset circuit

www.newnespress.com

60 Chapter 2

� High-speed crystal or ceramic resonator (HS)

� High-speed crystal or ceramic resonator with PLL (HSPLL)

� External clock with FOSC/4 on OSC2 (EC)

� External clock with I/O on OSC2 (port RA6) (ECIO)

� External resistor/capacitor with FOSC/4 output on OSC2 (RC)

� External resistor/capacitor with I/O on OSC2 (port RA6) (RCIO)

Crystal or Ceramic Resonator Operation

The first several clock sources listed use an external crystal or ceramic resonator that is

connected to the OSC1 and OSC2 pins. For applications where accuracy of timing is

important, a crystal should be used. And if a crystal is used, a parallel resonant crystal

must be chosen, since series resonant crystals do not oscillate when the system is first

powered.

Figure 2.14 shows how a crystal is connected to the microcontroller. The capacitor

values depend on the mode of the crystal and the selected frequency. Table 2.4 gives the

recommended values. For example, for a 4MHz crystal frequency, use 15pF capacitors.

Higher capacitance increases the oscillator stability but also increases the start-up time.

Resonators should be used in low-cost applications where high accuracy in timing is not

required. Figure 2.15 shows how a resonator is connected to the microcontroller.

Figure 2.13: External reset circuit

www.newnespress.com

61PIC18F Microcontroller Series

The LP (low-power) oscillator mode is advised in applications to up to 200KHz clock.

The XT mode is advised to up to 4MHz, and the HS (high-speed) mode is advised in

applications where the clock frequency is between 4MHz to 25MHz.

An external clock source may also be connected to the OSC1 pin in the LP, XT, or HS

modes as shown in Figure 2.16.

Figure 2.14: Using a crystal as the clock input

Table 2.4: Capacitor values

Mode Frequency C1,C2 (pF)

LP 32 KHz 33

200 KHz 15

XT 200 KHz 22–68

1.0 MHz 15

4.0 MHz 15

HS 4.0 MHz 15

8.0 MHz 15–33

20.0 MHz 15–33

25.0 MHz 15–33

www.newnespress.com

62 Chapter 2

External Clock Operation

An external clock source can be connected to the OSC1 input of the microcontroller in

EC and ECIO modes. No oscillator start-up time is required after a power-on reset.

Figure 2.17 shows the operation with the external clock in EC mode. Timing pulses at

the frequency FOSC/4 are available on the OSC2 pin. These pulses can be used for test

purposes or to provide pulses to external devices.

The ECIO mode is similar to the EC mode, except that the OSC2 pin can be used as a

general purpose digital I/O pin. As shown in Figure 2.18, this pin becomes bit 6 of

PORTA (i.e., pin RA6).

Figure 2.15: Using a resonator as the clock input

Figure 2.16: Connecting an external clock in LP, XT, or HS modes

www.newnespress.com

63PIC18F Microcontroller Series

Resistor/Capacitor Operation

In the many applications where accurate timing is not required we can use an external

resistor and a capacitor to provide clock pulses. The clock frequency is a function of the

resistor, the capacitor, the power supply voltage, and the temperature. The clock frequency

is not accurate and can vary from unit to unit due to manufacturing and component

tolerances. Table 2.5 gives the approximate clock frequency with various resistor and

capacitor combinations. A close approximation of the clock frequency is 1/(4.2RC),

where R should be between 3K and 100K and C should be greater than 20pF.

In RC mode, the oscillator frequency divided by 4 (FOSC/4) is available on pin OSC2

of the microcontroller. Figure 2.19 shows the operation at a clock frequency of

approximately 2MHz, where R ¼ 3.9K and C ¼ 30pF. In this application the clock

frequency at the output of OSC2 is 2MHz/4 ¼ 500KHz.

Figure 2.17: External clock in EC mode

Figure 2.18: External clock in ECIO mode

www.newnespress.com

64 Chapter 2

RCIO mode is similar to RC mode, except that the OSC2 pin can be used as a

general purpose digital I/O pin. As shown in Figure 2.20, this pin becomes bit 6 of

PORTA (i.e., pin RA6).

Crystal or Resonator with PLL

One of the problems with using high-frequency crystals or resonators is electromagnetic

interference. A Phase Locked Loop (PLL) circuit is provided that can be enabled to

multiply the clock frequency by 4. Thus, for a crystal clock frequency of 10MHz, the

Table 2.5: Clock frequency with RC

C (pF) R (K) Frequency (MHz)

22 3.3 3.3

4.7 2.3

10 1.08

30 3.3 2.4

4.7 1.7

10 0.793

Figure 2.19: 2MHz clock in RC mode

www.newnespress.com

65PIC18F Microcontroller Series

internal operation frequency will be multiplied to 40MHz. The PLL mode is enabled

when the oscillator configuration bits are programmed for HS mode.

Internal Clock

Some devices in the PIC18F family have internal clock modes (although the PIC18F452

does not). In this mode, OSC1 and OSC2 pins are available for general purpose I/O

(RA6 and RA7) or as FOSC/4 and RA7. An internal clock can be from 31KHz to 8MHz

and is selected by registers OSCCON and OSCTUNE. Figure 2.21 shows the bits of

internal clock control registers.

Clock Switching

It is possible to switch the clock from the main oscillator to a low-frequency clock

source. For example, the clock can be allowed to run fast in periods of intense activity

and slower when there is less activity. In the PIC18F452 microcontroller this is

controlled by bit SCS of the OSCCON register. In microcontrollers of the PIC18F

family that do support an internal clock, clock switching is controlled by bits SCS0 and

SCS1 of OSCCON. It is important to ensure that during clock switching unwanted

glitches do not occur in the clock signal. PIC18F microcontrollers contain circuitry to

ensure error-free switching from one frequency to another.

Figure 2.20: 2MHz clock in RCIO mode

www.newnespress.com

66 Chapter 2

2.1.7 Watchdog Timer

In PIC18F-series microcontrollers family members the watchdog timer (WDT) is a free-

running on-chip RC-based oscillator and does not require any external components.

When the WDT times out, a device RESET is generated. If the device is in SLEEP

mode, the WDT time-out will wake it up and continue with normal operation.

The watchdog is enabled/disabled by bit SWDTEN of register WDTCON. Setting

SWDTEN = 1 enables the WDT, and clearing this bit turns off the WDT. On the

PIC18F452 microcontroller an 8-bit postscaler is used to multiply the basic time-out

OSCCON register

IDLEN

31 KHz
125 KHz
250 KHz
500 KHz
1 MHz
2 MHz
4 MHz
8 MHz

Oscillator start-up timer running
Oscillator start-up timer expired

Internal oscillator unstable
Internal oscillator stable

Primary oscillator
01 Timer 1 oscillator
10 Internal oscillator
11 Internal oscillator

OSCTUNE register

Maximum frequency

XX000001
Center frequency

XX111111

Minimum frequency

IDLEN

IDLEN

IRCF2 IRCF1 IRCF0 OSTS I0FS SCSI SCS0

0
1

0
1

0
1

Run mode enabled
Idle mode enabled

IRCF2:IRCF0 000
001
010
011
100
101
110
111

OSTS

IOFS

SCSI:SCS0 00

XX011111

XX000000

XX100000

X X T5 T4 T3 T2 T1 T0

Figure 2.21: Internal clock control registers

www.newnespress.com

67PIC18F Microcontroller Series

period from 1 to 128 in powers of 2. This postscaler is controlled from configuration

register CONFIG2H. The typical basic WDT time-out period is 18ms for a postscaler

value of 1.

2.1.8 Parallel I/O Ports

The parallel ports in PIC18F microcontrollers are very similar to those of the PIC16

series. The number of I/O ports and port pins varies depending on which PIC18F

microcontroller is used, but all of them have at least PORTA and PORTB. The pins of a

port are labeled as RPn, where P is the port letter and n is the port bit number. For

example, PORTA pins are labeled RA0 to RA7, PORTB pins are labeled RB0 to RB7,

and so on.

When working with a port we may want to:

� Set port direction

� Set an output value

� Read an input value

� Set an output value and then read back the output value

The first three operations are the same in the PIC16 and the PIC18F series. In some

applications we may want to send a value to the port and then read back the value just

sent. The PIC16 series has a weakness in the port design such that the value read from

a port may be different from the value just written to it. This is because the reading

is the actual port bit pin value, and this value can be changed by external devices

connected to the port pin. In the PIC18F series, a latch register (e.g., LATA for

PORTA) is introduced to the I/O ports to hold the actual value sent to a port pin.

Reading from the port reads the latched value, which is not affected by any external

device.

In this section we shall be looking at the general structure of I/O ports.

PORTA

In the PIC18F452 microcontroller PORTA is 7 bits wide and port pins are shared with

other functions. Table 2.6 shows the PORTA pin functions.

www.newnespress.com

68 Chapter 2

Table 2.6: PIC18F452 PORTA pin functions

Pin Description

RA0/AN0

RA0 Digital I/O

AN0 Analog input 0

RA1/AN1

RA1 Digital I/O

AN1 Analog input 1

RA2/AN2/VREF�
RA2 Digital I/O

AN2 Analog input 2

VREF� A/D reference voltage (low) input

RA3/AN3/VREFþ
RA3 Digital I/O

AN3 Analog input 3

VREFþ A/D reference voltage (high) input

RA4/T0CKI

RA4 Digital I/O

T0CKI Timer 0 external clock input

RA5/AN4/SS/LVDIN

RA5 Digital I/O

AN4 Analog input 4

SS SPI Slave Select input

RA6 Digital I/O

www.newnespress.com

69PIC18F Microcontroller Series

The architecture of PORTA is shown in Figure 2.22. There are three registers associated

with PORTA:

� Port data register—PORTA

� Port direction register—TRISA

� Port latch register—LATA

Figure 2.22: PIC18F452 PORTA RA0–RA3 and RA5 pins

www.newnespress.com

70 Chapter 2

PORTA is the name of the port data register. The TRISA register defines the direction

of PORTA pins, where a logic 1 in a bit position defines the pin as an input pin, and a

0 in a bit position defines it as an output pin. LATA is the output latch register which

shares the same data latch as PORTA. Writing to one is equivalent to writing to the

other. But reading from LATA activates the buffer at the top of the diagram, and the

value held in the PORTA/LATA data latch is transferred to the data bus independent of

the state of the actual output pin of the microcontroller.

Bits 0 through 3 and 5 of PORTA are also used as analog inputs. After a device

reset, these pins are programmed as analog inputs and RA4 and RA6 are configured

as digital inputs. To program the analog inputs as digital I/O, the ADCON1 register

(A/D register) must be programmed accordingly. Writing 7 to ADCON1 configures

all PORTA pins as digital I/O.

The RA4 pin is multiplexed with the Timer 0 clock input (T0CKI). This is a Schmitt

trigger input and an open drain output.

RA6 can be used as a general purpose I/O pin, as the OSC2 clock input, or as a clock

output providing FOSC/4 clock pulses.

PORTB

In PIC18F452 microcontroller PORTB is an 8-bit bidirectional port shared with

interrupt pins and serial device programming pins. Table 2.7 gives the PORTB bit

functions.

PORTB is controlled by three registers:

� Port data register—PORTB

� Port direction register—TRISB

� Port latch register—LATB

The general operation of PORTB is similar to that of PORTA. Figure 2.23 shows

the architecture of PORTB. Each port pin has a weak internal pull-up which can

be enabled by clearing bit RBPU of register INTCON2. These pull-ups are disabled

on a power-on reset and when the port pin is configured as an output. On a power-on

reset, PORTB pins are configured as digital inputs. Internal pull-ups allow input devices

such as switches to be connected to PORTB pins without the use of external pull-up

resistors. This saves costs because the component count and wiring requirements are

reduced.

www.newnespress.com

71PIC18F Microcontroller Series

Table 2.7: PIC18F452 PORTB pin functions

Pin Description

RB0/INT0

RB0 Digital I/O

INT0 External interrupt 0

RB1/INT1

RB1 Digital I/O

INT1 External interrupt 1

RB2/INT2

RB2 Digital I/O

INT2 External interrupt 2

RB3/
CCP2

RB3 Digital I/O

CCP2 Capture 2 input, compare 2, and PWM2 output

RB4 Digital I/O, interrupt on change pin

RB5/PGM

RB5 Digital I/O, interrupt on change pin

PGM Low-voltage ICSP programming pin

RB6/PGC

RB6 Digital I/O, interrupt on change pin

PGC In-circuit debugger and ICSP programming pin

RB7/PGD

RB7 Digital I/O, interrupt on change pin

PGD In-circuit debugger and ICSP programming pin

www.newnespress.com

72 Chapter 2

Port pins RB4–RB7 can be used as interrupt-on-change inputs, whereby a change on

any of pins 4 through 7 causes an interrupt flag to be set. The interrupt enable and flag

bits RBIE and RBIF are in register INTCON.

PORTC, PORTD, PORTE, and Beyond

In addition to PORTA and PORTB, the PIC18F452 has 8-bit bidirectional ports PORTC

and PORTD, and 3-bit PORTE. Each port has its own data register (e.g., PORTC), data

Figure 2.23: PIC18F452 PORTB RB4–RB7 pins

www.newnespress.com

73PIC18F Microcontroller Series

direction register (e.g., TRISC), and data latch register (e.g., LATC). The general

operation of these ports is similar to that of PORTA.2.1.

In the PIC18F452 microcontroller PORTC is multiplexed with several peripheral

functions as shown in Table 2.8. On a power-on reset, PORTC pins are configured as

digital inputs.

In the PIC18F452 microcontroller, PORTD has Schmitt trigger input buffers. On a

power-on reset, PORTD is configured as digital input. PORTD can be configured as an

8-bit parallel slave port (i.e., a microprocessor port) by setting bit 4 of the TRISE

register. Table 2.9 shows functions of PORTD pins.

In the PIC18F452 microcontroller, PORTE is only 3 bits wide. As shown in Table 2.10,

port pins are shared with analog inputs and with parallel slave port read/write control

bits. On a power-on reset, PORTE pins are configured as analog inputs and register

ADCON1 must be programmed to change these pins to digital I/O.

2.1.9 Timers

The PIC18F452 microcontroller has four programmable timers which can be used in

many tasks, such as generating timing signals, causing interrupts to be generated at

specific time intervals, measuring frequency and time intervals, and so on.

This section introduces the timers available in the PIC18F452 microcontroller.

Timer 0

Timer 0 is similar to the PIC16 series Timer 0, except that it can operate either in 8-bit

or in 16-bit mode. Timer 0 has the following basic features:

� 8-bit or 16-bit operation

� 8-bit programmable prescaler

� External or internal clock source

� Interupt generation on overflow

Timer 0 control register is T0CON, shown in Figure 2.24. The lower 6 bits of this

register have similar functions to the PIC16-series OPTION register. The top two

bits are used to select the 8-bit or 16-bit mode of operation and to enable/disable

the timer.

www.newnespress.com

74 Chapter 2

Table 2.8: PIC18F452 PORTC pin functions

Pin Description

RC0/T1OSO/T1CKI

RC0 Digital I/O

T1OSO Timer 1 oscillator output

T1CKI Timer 1/Timer 3 external clock input

RC1/T1OSI/CCP2

RC1 Digital I/O

T1OSI Timer 1 oscillator input

CCP2 Capture 2 input, Compare 2 and PWM2 output

RC2/CCP1

RC2 Digital I/O

CCP1 Capture 1 input, Compare 1 and PWM1 output

RC3/SCK/SCL

RC3 Digital I/O

SCK Synchronous serial clock input/output for SPI

SCL Synchronous serial clock input/output for I2C

RC4/SDI/SDA

RC4 Digital I/O

SDI SPI data in

SDA I2C data I/O

RC5/SDO

RC5 Digital I/O

SDO SPI data output

RC6/TX/CK

RC6 Digital I/O

TX USART transmit pin

CK USART synchronous clock pin

RC7/RX/DT

RC7 Digital I/O

RX USART receive pin

DT USART synchronous data pin

www.newnespress.com

Table 2.9: PIC18F452 PORTD pin functions

Pin Description

RD0/PSP0

RD0 Digital I/O

PSP0 Parallel slave port bit 0

RD1/PSP1

RD1 Digital I/O

PSP1 Parallel slave port bit 1

RD2/PSP2

RD2 Digital I/O

PSP2 Parallel slave port bit 2

RD3/PSP3

RD3 Digital I/O

PSP3 Parallel slave port bit 3

RD4/PSP4

RD4 Digital I/O

PSP4 Parallel slave port bit 4

RD5/PSP5

RD5 Digital I/O

PSP5 Parallel slave port bit 5

RD6/PSP6

RD6 Digital I/O

PSP6 Parallel slave port bit 6

RD7/PSP7

RD7 Digital I/O

PSP7 Parallel slave port bit 7

www.newnespress.com

76 Chapter 2

Timer 0 can be operated either as a timer or as a counter. Timer mode is selected by

clearing the T0CS bit, and in this mode the clock to the timer is derived from FOSC/4.

Counter mode is selected by setting the T0CS bit, and in this mode Timer 0 is

incremented on the rising or falling edge of input RA4/T0CKI. Bit T0SE of T0CON

selects the edge triggering mode.

An 8-bit prescaler can be used to change the timer clock rate by a factor of up to 256.

The prescaler is selected by bits PSA and T0PS2:T0PS0 of register T0CON.

8-Bit Mode Figure 2.25 shows Timer 0 in 8-bit mode. The following operations are

normally carried out in a timer application:

� Clear T0CS to select clock FOSC/4

� Use bits T0PS2:T0PS0 to select a suitable prescaler value

� Clear PSA to select the prescaler

Table 2.10: PIC18F452 PORTE pin functions

Pin Description

RE0/RD/AN5

RE0 Digital I/O

RD Parallel slave port read control pin

AN5 Analog input 5

RE1/WR/
AN6

RE1 Digital I/O

WR Parallel slave port write control pin

AN6 Analog input 6

RE2/CS/AN7

RE2 Digital I/O

CS Parallel slave port CS

AN7 Analog input 7

www.newnespress.com

77PIC18F Microcontroller Series

Figure 2.24: Timer 0 control register, T0CON

Figure 2.25: Timer 0 in 8-bit mode

www.newnespress.com

78 Chapter 2

� Load timer register TMR0L

� Optionally enable Timer 0 interrupts

� The timer counts up and an interrupt is generated when the timer value

overflows from FFH to 00H in 8-bit mode (or from FFFFH to 0000H in

16-bit mode)

By loading a value into the TMR0 register we can control the count until an overflow

occurs. The formula that follows can be used to calculate the time it will take for the

timer to overflow (or to generate an interrupt) given the oscillator period, the value

loaded into the timer, and the prescaler value:

Overflow time ¼ 4� TOSC � Prescaler� 256� TMR0ð Þ ð2:1Þ

where

Overflow time is in ms

TOSC is the oscillator period in ms

Prescaler is the prescaler value

TMR0 is the value loaded into TMR0 register

For example, assume that we are using a 4MHz crystal, and the prescaler is chosen as

1:8 by setting bits PS2:PS0 to 010. Also assume that the value loaded into the timer

register TMR0 is decimal 100. The overflow time is then given by:

4MHZ clock has a period;T ¼ 1=f ¼ 0:25ms

using the above formula

Overflow time ¼ 4� 0:25� 8� 256� 100ð Þ ¼ 1248ms

Thus, the timer will overflow after 1.248msec, and a timer interrupt will be generated if

the timer interrupt and global interrupts are enabled.

What we normally want is to know what value to load into the TMR0 register for a

required overflow time. This can be calculated by modifying Equation (2.1) as follows:

TMR0 ¼ 256� Overflow timeð Þ= 4� TOSC � Prescalerð Þ ð2:2Þ

www.newnespress.com

79PIC18F Microcontroller Series

For example, suppose we want an interrupt to be generated after 500ms and the clock

and the prescaler values are as before. The value to be loaded into the TMR0 register

can be calculated using Equation (2.2) as follows:

TMR0 ¼ 256� 500= 4� 0:25� 8ð Þ ¼ 193:5

The closest number we can load into TMR0 register is 193.

16-Bit Mode The Timer 0 in 16-bit mode is shown in Figure 2.26. Here, two timer

registers named TMR0L and TMR0 are used to store the 16-bit timer value. The low

byte TMR0L is directly loadable from the data bus. The high byte TMR0 can be loaded

through a buffer called TMR0H. During a read of TMR0L, the high byte of the timer

(TMR0) is also loaded into TMR0H, and thus all 16 bits of the timer value can be read.

To read the 16-bit timer value, first we have to read TMR0L, and then read TMR0H

in a later instruction. Similarly, during a write to TMR0L, the high byte of the timer

is also updated with the contents of TMR0H, allowing all 16 bits to be written to the

timer. Thus, to write to the timer the program should first write the required high

byte to TMR0H. When the low byte is written to TMR0L, then the value stored in

TMR0H is automatically transferred to TMR0, thus causing all 16 bits to be written

to the timer.

Timer 1

PIC18F452 Timer 1 is a 16-bit timer controlled by register T1CON, as shown in

Figure 2.27. Figure 2.28 shows the internal structure of Timer 1.

Figure 2.26: Timer 0 in 16-bit mode

www.newnespress.com

80 Chapter 2

Timer 1 can be operated as either a timer or a counter. When bit TMR1CS of register

T1CON is low, clock FOSC/4 is selected for the timer. When TMR1CS is high, the

module operates as a counter clocked from input T1OSI. A crystal oscillator circuit,

enabled from bit T1OSCEN of T1CON, is built between pins T1OSI and T1OSO

where a crystal up to 200KHz can be connected between these pins. This oscillator

is primarily intended for a 32KHz crystal operation in real-time clock applications.

A prescaler is used in Timer 1 that can change the timing rate as a factor of

1, 2, 4, or 8.

Figure 2.27: Timer 1 control register, T1CON

www.newnespress.com

81PIC18F Microcontroller Series

Timer 1 can be configured so that read/write can be performed either in 16-bit mode or

in two 8-bit modes. Bit RD16 of register T1CON controls the mode. When RD16 is

low, timer read and write operations are performed as two 8-bit operations. When RD16

is high, the timer read and write operations are as in Timer 0 16-bit mode (i.e., a buffer

is used between the timer register and the data bus) (see Figure 2.29).

If the Timer 1 interrupts are enabled, an interrupt will be generated when the timer

value rolls over from FFFFH to 0000H.

Timer 2

Timer 2 is an 8-bit timer with the following features:

� 8-bit timer (TMR2)

� 8-bit period register (PR2)

� Programmable prescaler

� Programmable postscaler

� Interrupt when TM2 matches PR2

Timer 2 is controlled from register T2CON, as shown in Figure 2.30. Bits T2CKPS1:

T2CKPS0 set the prescaler for a scaling of 1, 4, and 16. Bits TOUTPS3:TOUTPS0 set

Figure 2.28: Internal structure of Timer 1

www.newnespress.com

82 Chapter 2

Figure 2.29: Timer 1 in 16-bit mode

Figure 2.30: Timer 2 control register, T2CON

www.newnespress.com

83PIC18F Microcontroller Series

the postscaler for a scaling of 1:1 to 1:16. The timer can be turned on or off by setting or

clearing bit TMR2ON.

The block diagram of Timer 2 is shown in Figure 2.31. Timer 2 can be used for the

PWM mode of the CCP module. The output of Timer 2 can be software selected by the

SSP module as a baud clock. Timer 2 increments from 00H until it matches PR2 and

sets the interrupt flag. It then resets to 00H on the next cycle.

Timer 3

The structure and operation of Timer 3 is the same as for Timer 1, having registers

TMR3H and TMR3L. This timer is controlled from register T3CON as shown in

Figure 2.32.

The block diagram of Timer 3 is shown in Figure 2.33.

2.1.10 Capture/Compare/PWM Modules (CCP)

The PIC18F452 microcontroller has two capture/compare/PWM (CCP) modules, and

they work with Timers 1, 2, and 3 to provide capture, compare, and pulse width

modulation (PWM) operations. Each module has two 8-bit registers. Module 1 registers

are CCPR1L and CCPR1H, and module 2 registers are CCPR2L and CCPR2H.

Together, each register pair forms a 16-bit register and can be used to capture, compare,

or generate waveforms with a specified duty cycle. Module 1 is controlled by register

Figure 2.31: Timer 2 block diagram

www.newnespress.com

84 Chapter 2

CCP1CON, and module 2 is controlled by CCP2CON. Figure 2.34 shows the bit

allocations of the CCP control registers.

Capture Mode

In capture mode, the registers operate like a stopwatch. When an event occurs, the time

of the event is recorded, although the clock continues running (a stopwatch, on the other

hand, stops when the event time is recorded).

Figure 2.32: Timer 3 control register, T3CON

www.newnespress.com

85PIC18F Microcontroller Series

Figure 2.35 shows the capture mode of operation. Here, CCP1 will be considered,

but the operation of CCP2 is identical with the register and port names changed

accordingly. In this mode CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or

TMR3 registers when an event occurs on pin RC2/CCP1 (pin RC2/CCP1 must be

configured as an input pin using TRISC). An external signal can be prescaled by 4 or

16. The event is selected by control bits CCP1M3:CCP1M0, and any of the following

events can be selected:

� Every falling edge

� Every rising edge

� Every fourth rising edge

� Every sixteenth rising edge

If the capture interrupt is enabled, the occurrence of an event causes an interrupt to be

generated in software. If another capture occurs before the value in register CCPR1 is

read, the old captured value is overwritten by the new captured value.

Either Timer 1 or Timer 3 can be used in capture mode. They must be running in timer

mode, or in synchronized counter mode, selected by register T3CON.

Figure 2.33: Block diagram of Timer 3

www.newnespress.com

86 Chapter 2

Compare Mode

In compare mode, a digital comparator is used to compare the value of Timer 1 or

Timer 3 to the value in a 16-bit register pair. When a match occurs, the output state of a

pin is changed. Figure 2.36 shows the block diagram of compare mode in operation.

Here only module CCP1 is considered, but the operation of module CCP2 is

identical.

The value of the 16-bit register pair CCPR1H:CCPR1L is continuously compared

against the Timer 1 or Timer 3 value. When a match occurs, the state of the RC2/CCP1

Figure 2.34: CCPxCON register bit allocations

www.newnespress.com

87PIC18F Microcontroller Series

pin is changed depending on the programming of bits CCP1M2:CCP1M0 of register

CCP1CON. The following changes can be programmed:

� Force RC2/CCP1 high

� Force RC2/CCP1 low

� Toggle RC2/CCP1 pin (low to high or high to low)

� Generate interrupt when a match occurs

� No change

Timer 1 or Timer 3 must be running in timer mode or in synchronized counter mode,

selected by register T3CON.

Figure 2.35: Capture mode of operation

www.newnespress.com

88 Chapter 2

PWM Module

The pulse width modulation (PWM) mode produces a PWM output at 10-bit resolution.

A PWM output is basically a square waveform with a specified period and duty cycle.

Figure 2.37 shows a typical PWM waveform.

Figure 2.36: Compare mode of operation

Period

Duty Cycle

Figure 2.37: Typical PWM waveform

www.newnespress.com

89PIC18F Microcontroller Series

Figure 2.38 shows the PWM module block diagram. The module is controlled by

Timer 2. The PWM period is given by:

PWM period ¼ PR2þ 1ð Þ�TMR2PS�4�TOSC ð2:3Þ

or

PR2 ¼ PWM period

TMR2PS�4�TOSC

� 1 ð2:4Þ

where

PR2 is the value loaded into Timer 2 register

TMR2PS is the Timer 2 prescaler value

TOSC is the clock oscillator period (seconds)

The PWM frequency is defined as 1/(PWM period).

The resolution of the PWM duty cycle is 10 bits. The PWM duty cycle is selected by

writing the eight most significant bits into the CCPR1L register and the two least

Figure 2.38: PWM module block diagram

www.newnespress.com

90 Chapter 2

significant bits into bits 4 and 5 of CCP1CON register. The duty cycle (in seconds) is

given by:

PWM duty cycle ¼ CCPR1L :CCP1CON < 5 :4 >ð Þ�TMR2PS�TOSC ð2:5Þ

or

CCPR1L :CCP1CON < 5 :4 >¼ PWM duty cycle

TMR2PS�TOSC

ð2:6Þ

The steps to configure the PWM are as follows:

� Specify the required period and duty cycle.

� Choose a value for the Timer 2 prescaler (TMR2PS).

� Calculate the value to be written into the PR2 register using Equation (2.2).

� Calculate the value to be loaded into the CCPR1L and CCP1CON registers

using Equation (2.6).

� Clear bit 2 of TRISC to make CCP1 pin an output pin.

� Configure the CCP1 module for PWM operation using register CCP1CON.

The following example shows how the PWM can be set up.

Example 2.1

PWM pulses must be generated from pin CCP1 of a PIC18F452 microcontroller. The

required pulse period is 44ms and the required duty cycle is 50%. Assuming that the

microcontroller operates with a 4MHz crystal, calculate the values to be loaded into the

various registers.

Solution 2.1

Using a 4MHz crystal;TOSC ¼ 1=4 ¼ 0:25� 10�6

The required PWM duty cycle is 44/2 = 22ms.

From Equation (2.4), assuming a timer prescaler factor of 4, we have:

PR2 ¼ PWM period

TMR2PS�4�TOSC

� 1

www.newnespress.com

91PIC18F Microcontroller Series

or

PR2 ¼ 44�10�6

4�4�0:25�10�6
� 1 ¼ 10 i:e:; 0AH

and from Equation (2.6)

CCPR1L :CCP1CON < 5 :4 >¼ PWM duty cycle

TMR2PS�TOSC

or

CCPR1L :CCP1CON < 5 :4 >¼ 22�10�6

4�0:25�10�6
¼ 22

But the equivalent of number 22 in 10-bit binary is:

“00 00010110”

Therefore, the value to be loaded into bits 4 and 5 of CCP1CON is “00.” Bits 2 and 3 of

CCP1CON must be set to high for PWM operation. Therefore, CCP1CON must be set

to bit pattern (“X” is “don’t care”):

XX001100

Taking the don’t-care entries as 0, we can set CCP1CON to hexadecimal 0CH.

The value to be loaded into CCPR1L is “00010110” (i.e., hexadecimal number 16H).

The required steps are summarized as follows:

� Load Timer 2 with prescaler of 4 (i.e., load T2CON) with 00000101 (i.e., 05H).

� Load 0AH into PR2.

� Load 16H into CCPR1L.

� Load 0 into TRISC (make CCP1 pin output).

� Load 0CH into CCP1CON.

One period of the generated PWM waveform is shown in Figure 2.39.

www.newnespress.com

92 Chapter 2

2.1.11 Analog-to-Digital Converter (A/D) Module

An analog-to-digital converter (A/D) is another important peripheral component of a

microcontroller. The A/D converts an analog input voltage into a digital number so it

can be processed by a microcontroller or any other digital system. There are many

analog-to-digital converter chips available on the market, and an embedded systems

designer should understand the characteristics of such chips so they can be used

efficiently.

As far as the input and output voltage are concerned A/D converters can be classified as

either unipolar and bipolar. Unipolar A/D converters accept unipolar input voltages in

the range 0 to þ0V, and bipolar A/D converters accept bipolar input voltages in the

range �V. Bipolar converters are frequently used in signal processing applications,

where the signals by nature are bipolar. Unipolar converters are usually cheaper, and

they are used in many control and instrumentation applications.

Figure 2.40 shows the typical steps involved in reading and converting an analog signal

into digital form, a process also known as signal conditioning. Signals received from

sensors usually need to be processed before being fed to an A/D converter. This

44µs

22µs 22µs

Figure 2.39: Generated PWM waveform

Analog
signal

Scaling Filter
Sample

&
Hold

Mux.
A/D

Converter

Figure 2.40: Signal conditioning and A/D conversion process

www.newnespress.com

93PIC18F Microcontroller Series

processing usually begins with scaling the signal to the correct value. Unwanted signal

components are then removed by filtering the signal using classical filters (e.g., a low-

pass filter). Finally, before feeding the signal to an A/D converter, the signal is passed

through a sample-and-hold device. This is particularly important with fast real-time

signals whose value may be changing between the sampling instants. A sample-and-

hold device ensures that the signal stays at a constant value during the actual conversion

process. Many applications required more than one A/D, which normally involves using

an analog multiplexer at the input of the A/D. The multiplexer selects only one signal at

any time and presents this signal to the A/D converter. An A/D converter usually has a

single analog input and a digital parallel output. The conversion process is as follows:

� Apply the processed signal to the A/D input

� Start the conversion

� Wait until conversion is complete

� Read the converted digital data

The A/D conversion starts by triggering the converter. Depending on the speed of the

converter, the conversion process itself can take several microseconds. At the end of

the conversion, the converter either raises a flag or generates an interrupt to indicate

that the conversion is complete. The converted parallel output data can then be read

by the digital device connected to the A/D converter.

Most members of the PIC18F family contain a 10-bit A/D converter. If the chosen

voltage reference is +5V, the voltage step value is:

5V

1023

� �
¼ 0:00489V or 4:89mV

Therefore, for example, if the input voltage is 1.0V, the converter will generate a digital

output of 1.0/0.00489 = 205 decimal. Similarly, if the input voltage is 3.0V, the

converter will generate 3.0/0.00489 = 613.

The A/D converter used by the PIC18F452 microcontroller has eight channels, named

AN0–AN7, which are shared by the PORTA and PORTE pins. Figure 2.41 shows the

block diagram of the A/D converter.

www.newnespress.com

94 Chapter 2

The A/D converter has four registers. Registers ADRESH and ADRESL store the

higher and lower results of the conversion respectively. Register ADCON0, shown in

Figure 2.42, controls the operation of the A/D module, such as selecting the conversion

clock together with register ADCON1, selecting an input channel, starting a conversion,

and powering up and shutting down the A/D converter.

Register ADCON1 (see Figure 2.43) is used for selecting the conversion format,

configuring the A/D channels for analog input, selecting the reference voltage, and

selecting the conversion clock together with register ADCON0.

A/D conversion starts by setting the GO/DONE bit of ADCON0. When the conversion

is complete, the 2 bits of the converted data is written into register ADRESH, and the

remaining 8 bits are written into register ADRESL. At the same time the GO/DONE bit

is cleared to indicate the end of conversion. If required, interrupts can be enabled so that

a software interrupt is generated when the conversion is complete.

Figure 2.41: Block diagram of the PIC18F452 A/D converter

www.newnespress.com

95PIC18F Microcontroller Series

Figure 2.42: ADCON0 register

www.newnespress.com

96 Chapter 2

Figure 2.43: ADCON1 register

www.newnespress.com

97PIC18F Microcontroller Series

The steps in carrying out an A/D conversion are as follows:

� Use ADCON1 to configure required channels as analog and configure the

reference voltage.

� Set the TRISA or TRISE bits so the required channel is an input port.

� Use ADCON0 to select the required analog input channel.

� Use ADCON0 and ADCON1 to select the conversion clock.

� Use ADCON0 to turn on the A/D module.

� Configure the A/D interrupt (if desired).

� Set the GO/DONE bit to start conversion.

� Wait until the GO/DONE bit is cleared, or until a conversion complete interrupt

is generated.

� Read the converted data from ADRESH and ADRESL.

� Repeat these steps as required.

For correct A/D conversion, the A/D conversion clock must be selected to ensure a

minimum bit conversion time of 1.6ms. Table 2.11 gives the recommended A/D clock

sources for various microcontroller operating frequencies. For example, if the

Table 2.11: A/D conversion clock selection

A/D clock source

Operation ADCS2:ADCS0 Maximum microcontroller frequency

2 TOSC 000 1.25 MHz

4 TOSC 100 2.50 MHz

8 TOSC 001 5.0 MHz

16 TOSC 101 10.0 MHz

32 TOSC 010 20.0 MHz

64 TOSC 110 40.0 MHz

RC 011 –

www.newnespress.com

98 Chapter 2

microcontroller is operated from a 10MHz clock, the A/D clock source should be

FOSC/16 or higher (e.g., FOSC/32).

Bit ADFM of register ADCON1 controls the format of a conversion. When ADFM is

cleared, the 10-bit result is left justified (see Figure 2.44) and lower 6 bits of ADRESL

are cleared to 0. When ADFM is set to 1 the result is right justified and the upper 6 bits

of ADRESH are cleared to 0. This is the mode most commonly used, in which

ADRESL contains the lower 8 bits, and bits 0 and 1 of ADRESH contain the upper

2 bits of the 10-bit result.

Analog Input Model and Acquisition Time

An understanding of the A/D analog input model is necessary to interface the A/D to

external devices. Figure 2.45 shows the analog input model of the A/D. The analog

input voltage VAIN and the source resistance RS are shown on the left side of the

diagram. It is recommended that the source resistance be no greater than 2.5K. The

analog signal is applied to the pin labeled ANx. There is a small capacitance (5pF) and

a leakage current to the ground of approximately 500nA. RIC is the interconnect

resistance, which has a value of less than 1K. The sampling process is shown with

switch SS having a resistance RSS whose value depends on the voltage as shown in the

Figure 2.44: Formatting the A/D conversion result

www.newnespress.com

99PIC18F Microcontroller Series

small graph at the bottom of Figure 2.45. The value of RSS is approximately 7K at 5V

supply voltage.

The A/D converter is based on a switched capacitor principle, and capacitor CHOLD

shown in Figure 2.45 must be charged fully before the start of a conversion. This is a

120pF capacitor which is disconnected from the input pin once the conversion is started.

The acquisition time can be calculated by using Equation (2.7), provided by Microchip

Inc:

TACQ ¼ Amplifier settling timeþ Holding capacitor charging time

þ temperature coefficient
ð2:7Þ

The amplifier settling time is specified as a fixed 2ms. The temperature coefficient,

which is only applicable if the temperature is above 25�C, is specified as:

Temperature coefficient ¼ Temperature� 25�Cð Þ 0:05ms=�Cð Þ ð2:8Þ

Equation (2.8) shows that the effect of the temperature is very small, creating about

0.5ms delay for every 10�C above 25�C. Thus, assuming a working environment

Figure 2.45: Analog input model of the A/D converter

www.newnespress.com

100 Chapter 2

between 25�C and 35�C, the maximum delay due to temperature will be 0.5ms, which
can be ignored for most practical applications.

The holding capacitor charging time as specified by Microchip Inc is:

Holding capacitor charging time ¼ � 120pFð Þ 1Kþ RSS þRSð ÞLn 1=2048ð Þ ð2:9Þ

Assuming that RSS ¼ 7K, RS ¼ 2.5K, Equation (2.9) gives the holding capacitor

charging time as 9.6ms.

The acquisition time is then calculated as:

TACQ ¼ 2þ 9:6þ 0:5 ¼ 12:1ms

A full 10-bit conversion takes 12 A/D cycles, and each A/D cycle is specified at a

minimum of 1.6ms. Thus, the fastest conversion time is 19.2ms. Adding this to the

best possible acquisition time gives a total time to complete a conversion of 19.2 þ 12.1

¼ 31.3ms.

When a conversion is complete, it is specified that the converter should wait for two

conversion periods before starting a new conversion. This corresponds to 2� 1.6¼ 3.2ms.
Adding this to the best possible conversion time of 31.3ms gives a complete conversion

time of 34.5ms. Assuming the A/D converter is used successively, and ignoring the

software overheads, this implies a maximum sampling frequency of about 29KHz.

2.1.12 Interrupts

An interrupt is an event that requires the CPU to stop normal program execution and

then execute a program code related to the event causing the interrupt. Interrupts can

be generated internally (by some event inside the chip) or externally (by some external

event). An example of an internal interrupt is a timer overflowing or the A/D completing a

conversion. An example of an external interrupt is an I/O pin changing state.

Interrupts can be useful in many applications such as:

� Time critical applications. Applications which require the immediate attention

of the CPU can use interrupts. For example, in an emergency such as a power

failure or fire in a plant the CPU may have to shut down the system immediately

in an orderly manner. In such applications an external interrupt can force the

CPU to stop whatever it is doing and take immediate action.

www.newnespress.com

101PIC18F Microcontroller Series

� Performing routine tasks. Many applications require the CPU to perform routine

work at precise times, such as checking the state of a peripheral device exactly

every millisecond. A timer interrupt scheduled with the required timing can

divert the CPU from normal program execution to accomplish the task at the

precise time required.

� Task switching in multi-tasking applications. In multi-tasking applications, each

task may have a finite time to execute its code. Interrupt mechanisms can be

used to stop a task should it consume more than its allocated time.

� To service peripheral devices quickly. Some applications may need to know

when a task, such as an A/D conversion, is completed. This can be

accomplished by continuously checking the completion flag of the A/D

converter. A more elegant solution would be to enable the A/D completion

interrupt so the CPU is forced to read the converted data as soon as it becomes

available.

The PIC18F452 microcontroller has both core and peripheral interrupt sources. The

core interrupt sources are:

� External edge-triggered interrupt on INT0, INT1, and INT2 pins.

� PORTB pins change interrupts (any one of the RB4–RB7 pins changing state)

� Timer 0 overflow interrupt

The peripheral interrupt sources are:

� Parallel slave port read/write interrupt

� A/D conversion complete interrupt

� USART receive interrupt

� USART transmit interrupt

� Synchronous serial port interrupt

� CCP1 interrupt

� TMR1 overflow interrupt

� TMR2 overflow interrupt

� Comparator interrupt

www.newnespress.com

102 Chapter 2

� EEPROM/FLASH write interrupt

� Bus collision interrupt

� Low-voltage detect interrupt

� Timer 3 overflow interrupt

� CCP2 interrupt

Interrupts in the PIC18F family can be divided into two groups: high priority and low

priority. Applications that require more attention can be placed in the higher priority

group. A high-priority interrupt can stop a low-priority interrupt that is in progress

and gain access to the CPU. However, high-priority interrupts cannot be stopped by

low-priority interrupts. If the application does not need to set priorities for interrupts,

the user can choose to disable the priority scheme so all interrupts are at the same

priority level. High-priority interrupts are vectored to address 00008H and low-priority

ones to address 000018H of the program memory. Normally, a user program code

(interrupt service routine, ISR) should be at the interrupt vector address to service

the interrupting device.

In the PIC18F452 microcontroller there are ten registers that control interrupt

operations. These are:

� RCON

� INTCON

� INTCON2

� INTCON3

� PIR1, PIR2

� PIE1, PIE2

� IPR1, IPR2

Every interrupt source (except INT0) has three bits to control its operation. These

bits are:

� A flag bit to indicate whether an interrupt has occurred. This bit has a name

ending in . . .IF

www.newnespress.com

103PIC18F Microcontroller Series

� An interrupt enable bit to enable or disable the interrupt source. This bit has the

name ending in . . .IE

� A priority bit to select high or low priority. This bit has a name ending in . . .IP

RCON Register

The top bit of the RCON register, called IPEN, is used to enable the interrupt priority

scheme. When IPEN ¼ 0, interrupt priority levels are disabled and the microcontroller

interrupt structure is similar to that of the PIC16 series. When IPEN ¼ 1, interrupt

priority levels are enabled. Figure 2.46 shows the bits of register RCON.

Enabling/Disabling Interrupts—No Priority Structure

When the IPEN bit is cleared, the priority feature is disabled. All interrupts branch

to address 00008H of the program memory. In this mode, bit PEIE of register

INTCON enables/disables all peripheral interrupt sources. Similarly, bit GIE of

INTCON enables/disables all interrupt sources. Figure 2.47 shows the bits of

register INTCON.

Figure 2.46: RCON register bits

www.newnespress.com

104 Chapter 2

Figure 2.47: INTCON register bits

www.newnespress.com

105PIC18F Microcontroller Series

For an interrupt to be accepted by the CPU the following conditions must be

satisfied:

� The interrupt enable bit of the interrupt source must be enabled. For example, if

the interrupt source is external interrupt pin INT0, then bit INT0IE of register

INTCON must be set to 1.

� The interrupt flag of the interrupt source must be cleared. For example, if the

interrupt source is external interrupt pin INT0, then bit INT0IF of register

INTCON must be cleared to 0.

� The peripheral interrupt enable/disable bit PEIE of INTCON must be set to 1 if

the interrupt source is a peripheral.

� The global interrupt enable/disable bit GIE of INTCON must be set to 1.

With an external interrupt source we normally have to define whether the interrupt

should occur on the low-to-high or high-to-low transition of the interrupt source.

With INT0 interrupts, for example, this is done by setting/clearing bit INTEDG0 of

register INTCON2.

When an interrupt occurs, the CPU stops its normal flow of execution, pushes the return

address onto the stack, and jumps to address 00008H in the program memory where the

user interrupt service routine program resides. Once the CPU is in the interrupt service

routine, the global interrupt enable bit (GIE) is cleared to disable further interrupts.

When multiple interrupt sources are enabled, the source of the interrupt can be

determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in

the software before reenabling interrupts to avoid recursive interrupts. When the CPU

has returned from the interrupt service routine, the global interrupt bit GIE is

automatically set by the software.

Enabling/Disabling Interrupts—Priority Structure

When the IPEN bit is set to 1, the priority feature is enabled and the interrupts

are grouped into two: low priority and high priority. Low-priority interrupts branch

to address 00008H and high-priority interrupts branch to address 000018H of the

program memory. Setting the priority bit makes the interrupt source a high-priority

interrupt, and clearing this bit makes the interrupt source a low-priority interrupt.

www.newnespress.com

106 Chapter 2

Setting the GIEH bit of INTCON enables all high-priority interrupts that have the

priority bit set. Similarly, setting the GIEL bit of INTCON enables all low-priority

interrupts (the priority is bit cleared).

For a high-priority interrupt to be accepted by the CPU, the following conditions must

be satisfied:

� The interrupt enable bit of the interrupt source must be enabled. For example, if

the interrupt source is external interrupt pin INT1, then bit INT1IE of register

INTCON3 must be set to 1.

� The interrupt flag of the interrupt source must be cleared. For example, if the

interrupt source is external interrupt pin INT1, then bit INT1IF of register

INTCON3 must be cleared to 0.

� The priority bit must be set to 1. For example, if the interrupt source is external

interrupt INT1, then bit INT1P of register INTCON3 must be set to 1.

� The global interrupt enable/disable bit GIEH of INTCON must be set to 1.

For a low-priority interrupt to be accepted by the CPU, the following conditions must

be satisfied:

� The interrupt enable bit of the interrupt source must be enabled. For example, if

the interrupt source is external interrupt pin INT1, then bit INT1IE of register

INTCON3 must be set to 1.

� The interrupt flag of the interrupt source must be cleared. For example, if the

interrupt source is external interrupt pin INT1, then bit INT1IF of register

INTCON3 must be cleared to 0.

� The priority bit must be cleared to 0. For example, if the interrupt source

is external interrupt INT1, then bit INT1P of register INTCON3 must be

cleared to 0.

� Low-priority interrupts must be enabled by setting bit GIEL of INTCON to 1.

� The global interrupt enable/disable bit GIEH of INTCON must be set to 1.

Table 2.12 gives a listing of the PIC18F452 microcontroller interrupt bit names and

register names for every interrupt source.

www.newnespress.com

107PIC18F Microcontroller Series

Table 2.12: PIC18F452 interrupt bits and registers

Interrupt source Flag bit Enable bit Priority bit

INT0 external INT0IF INT0IE –

INT1 external INT1IF INT1IE INT1IP

INT2 external INT2IF INT2IE INT2IP

RB port change RBIF RBIE RBIP

TMR0 overflow TMR0IF TMR0IE TMR0IP

TMR1overflow TMR1IF TMR1IE TMR1IP

TMR2 match PR2 TMR2IF TMR2IE TMR2IP

TMR3 overflow TMR3IF TMR3IE TMR3IP

A/D complete ADIF ADIE ADIP

CCP1 CCP1IF CCP1IE CCP1IP

CCP2 CCP2IF CCP2IE CCP2IP

USART RCV RCIF RCIE RCIP

USART TX TXIF TXIE TXIP

Parallel slave port PSPIF PSPIE PSPIP

Sync serial port SSPIF SSPIE SSPIP

Low-voltage detect LVDIF LVDIE LVDIP

Bus collision BCLIF BCLIE BCLIP

EEPROM/FLASH write EEIF EEIE EEIP

www.newnespress.com

108 Chapter 2

Figures 2.48 to 2.55 show the bit definitions of interrupt registers INTCON2,

INTCON3, PIR1, PIR2, PIE1, PIE2, IPR1, and IPR2.

Examples are given in this section to illustrate how the CPU can be programmed for an

interrupt.

Example 2.2

Set up INT1 as a falling-edge triggered interrupt input having low priority.

Solution 2.2

The following bits should be set up before the INT1 falling-edge triggered interrupts

can be accepted by the CPU in low-priority mode:

Figure 2.48: INTCON2 bit definitions

www.newnespress.com

109PIC18F Microcontroller Series

� Enable the priority structure. Set IPEN ¼ 1

� Make INT1 an input pin. Set TRISB ¼ 1

� Set INT1 interrupts for falling edge. SET INTEDG1 ¼ 0

� Enable INT1 interrupts. Set INT1IE ¼ 1

� Enable low priority. Set INT1IP ¼ 0

� Clear INT1 flag. Set INT1IF ¼ 0

� Enable low-priority interrupts. Set GIEL ¼ 1

� Enable all interrupts. Set GIEH ¼ 1

Figure 2.49: INTCON3 bit definitions

www.newnespress.com

110 Chapter 2

Figure 2.50: PIR1 bit definitions

www.newnespress.com

111PIC18F Microcontroller Series

When an interrupt occurs, the CPU jumps to address 00008H in the program memory

to execute the user program at the interrupt service routine.

Example 2.3

Set up INT1 as a rising-edge triggered interrupt input having high priority.

Solution 2.3

The following bits should be set up before the INT1 rising-edge triggered interrupts can

be accepted by the CPU in high-priority mode:

� Enable the priority structure. Set IPEN ¼ 1

� Make INT1 an input pin. Set TRISB ¼ 1

Figure 2.51: PIR2 bit definitions

www.newnespress.com

112 Chapter 2

� Set INT1 interrupts for rising edge. SET INTEDG1 ¼ 1

� Enable INT1 interrupts. Set INT1IE ¼ 1

� Enable high priority. Set INT1IP ¼ 1

� Clear INT1 flag. Set INT1IF ¼ 0

� Enable all interrupts. Set GIEH ¼ 1

When an interrupt occurs, the CPU jumps to address 000018H of the program memory

to execute the user program at the interrupt service routine.

Figure 2.52: PIE1 bit definitions

www.newnespress.com

113PIC18F Microcontroller Series

Figure 2.53: PIE2 bit definitions

Figure 2.54: IPR1 bit definitions

www.newnespress.com

114 Chapter 2

2.2 Summary

This chapter has described the architecture of the PIC18F family of microcontrollers. The

PIC18F452 was used as a typical sample microcontroller in this family. Other members of

the same family, such as the PIC18F242, have smaller pin counts and less functionality.

And some, such as the PIC18F6680, have larger pin counts and more functionality.

Important parts and peripheral circuits of the PIC18F series have been described,

including data memory, program memory, clock circuits, reset circuits, watchdog timer,

general purpose timers, capture and compare module, PWM module, A/D converter,

and the interrupt structure.

2.3 Exercises

1. Describe the data memory structure of the PIC18F452 microcontroller. What is a

bank? How many banks are there?

2. Explain the differences between a general purpose register (GPR) and a special

function register (SFR).

Figure 2.55: IPR2 bit definitions

www.newnespress.com

115PIC18F Microcontroller Series

3. Explain the various ways the PIC18F microcontroller can be reset. Draw a circuit

diagram to show how an external push-button switch can be used to reset the

microcontroller.

4. Describe the various clock sources that can be used to provide a clock to a

PIC18F452 microcontroller. Draw a circuit diagram to show how a 10MHz crystal

can be connected to the microcontroller.

5. Draw a circuit diagram to show how a resonator can be connected to a PIC18F

microcontroller.

6. In a non-time-critical application a clock must be provided for a PIC18F452

microcontroller using an external resistor and a capacitor. Draw a circuit diagram

to show how this can be done and find the component values for a required clock

frequency of 5MHz.

7. Explain how an external clock can provide clock pulses to a PIC18F

microcontroller.

8. What are the registers of PORTA? Explain the operation of the port by drawing

the port block diagram.

9. The watchdog timer must be set to provide an automatic reset every 0.5 seconds.

Describe how to do this, including the appropriate register bits.

10. PWM pulses must be generated from pin CCP1 of a PIC18F452 microcontroller.

The required pulse period is 100ms, and the required duty cycle is 50%. Assuming

the microcontroller is operating with a 4MHz crystal, calculate the values to be

loaded into the various registers.

11. Again, with regard to PWM pulses generated from pin CCP1 of a PIC18F452

microcontroller: If the required pulse frequency is 40KHz, and the required duty

cycle is 50%, and assuming the microcontroller is operating with a 4MHz crystal,

calculate the values to be loaded into the various registers.

12. An LM35DZ-type analog temperature sensor is connected to analog port AN0 of a

PIC18F452 microcontroller. The sensor provides an analog output voltage

proportional to the temperature (i.e., V0 = 10 mV/�C). Show the steps required to

read the temperature.

13. Explain the difference between a priority interrupt and a nonpriority interrupt.

www.newnespress.com

116 Chapter 2

14. Show the steps required to set up INT2 as a falling-edge triggered interrupt input

having low priority. What is the interrupt vector address?

15. Show the steps required to set up both INT1 and INT2 as falling-edge triggered

interrupt inputs having low priority.

16. Show the steps required to set up INT1 as falling-edge triggered and INT2 as

rising-edge triggered interrupt inputs having high priorities. Explain how to find

the source of the interrupt when an interrupt occurs.

17. Show the steps required to set up Timer 0 to generate interrupts every millisecond

with a high priority. What is the interrupt vector address?

18. In an application the CPU registers have been configured to accept interrupts from

external sources INT0, INT1, and INT2. An interrupt has been detected. Explain

how to find the source of the interrupt.

www.newnespress.com

117PIC18F Microcontroller Series

This page intentionally left blank

CHAP T E R 3

C Programming Language

There are several C compilers on the market for the PIC18 series of microcontrollers.

These compilers have many similar features, and they can all be used to develop

C-based high-level programs for PIC18 microcontrollers.

Some of the C compilers used most often in commercial, industrial, and educational

PIC18 microcontroller applications are:

� mikroC

� PICC18

� C18

� CCS

The popular and powerful mikroC, developed by MikroElektronika (web site:

www.microe.com), is easy to learn and comes with rich resources, such as a large

number of library functions and an integrated development environment with a built-in

simulator and an in-circuit debugger (e.g., mikroICD). A demo version of the compiler

with a 2K program limit is available from MikroElektronika.

PICC18, another popular C compiler, was developed by Hi-Tech Software (web site:

www.htsoft.com) and is available in two versions: standard and professional.

A powerful simulator and an integrated development environment (Hi-Tide) are

provided by the company. PICC18 is supported by the PROTEUS simulator

(www.labcenter.co.uk) which can be used to simulate PIC microcontroller–based

systems. A limited-period demo version of this compiler is available on the developer’s

web site.

www.newnespress.com

C18 is a product of Microchip Inc. (web site: www.microchip.com). A limited-period

demo version, as well as a limited functionality version of C18 with no time limit, are

available from the Microchip web site. C18 includes a simulator and supports hardware

and software development tools such as in-circuit emulators (e.g., ICE2000) and

in-circuit debuggers (e.g., ICD2).

CCS has been developed by the Custom Computer Systems Inc. (web site: www.

ccsinfo.com). The company offers a limited-period demo version of their compiler.

CCS provides a large number of built-in functions and supports an in-circuit debugger

(e.g., ICD-U40) which are very helpful in the development of PIC18 microcontroller–

based systems.

In this book we are mainly concentrating on the use of the mikroC compiler, and most

of the projects are based on this compiler.

3.1 Structure of a mikroC Program

Figure 3.1 shows the simplest structure of a mikroC program. This program flashes an

LED connected to port RB0 (bit 0 of PORTB) of a PIC microcontroller in one-second

/∗∗

LED FLASHING PROGRAM

This program flashes an LED connected to port pin RB0 of PORTB with one
second intervals.

Programmer
File
Date
Micro

∗∗/

void main()
{

for(;;) // Endless loop
{

TRISB = 0; // Configure PORTB as output
PORTB.0 = 0; // RB0 = 0
Delay_Ms(1000); // Wait 1 second
PORTB.0 = 1; // RB0 = 1
Delay_Ms(1000); // Wait 1 second

} // End of loop
}

: D. Ibrahim
: LED.C
: May, 2007
: PIC18F452

Figure 3.1: Structure of a simple C program

www.newnespress.com

120 Chapter 3

intervals. Do not worry if you don’t understand the operation of the program at this

stage, as all will come clear as this chapter progresses. Some of the programming

elements in Figure 3.1 are described in detail here.

3.1.1 Comments

Comments are used to clarify the operation of the program or a programming

statement. Comment lines are ignored and not compiled by the compiler. In mikroC

programs comments can be of two types: long comments, extending several lines, and

short comments, occupying only a single line. Comment lines at the beginning of a

program can describe briefly the program’s operation and provide the author’s name,

the program filename, the date the program was written, and a list of version numbers,

together with the modifications in each version. As shown in Figure 3.1, comments can

also be added after statements to describe the operations that the statements perform.

Clear and succinct comment lines are important for the maintenance and thus the lifetime

of a program, as a program with good comments is easier to modify and/or update.

As shown in Figure 3.1, long comments start with the character “/*” and terminate with

the character “*/”. Similarly, short comments start with the character “//” and do not

need a terminating character.

3.1.2 Beginning and Ending of a Program

In C language, a program begins with the keywords:

void main ()

After this, a curly opening bracket is used to indicate the beginning of the program

body. The program is terminated with a closing curly bracket. Thus, as shown in

Figure 3.1, the program has the following structure:

void main()
{

program body
}

3.1.3 Terminating Program Statements

In C language, all program statements must be terminated with the semicolon (“;”)

character; otherwise a compiler error will be generated:

www.newnespress.com

121C Programming Language

j ¼ 5; // correct
j ¼ 5 // error

3.1.4 White Spaces

White spaces are spaces, blanks, tabs, and newline characters. The C compiler ignores

all white spaces. Thus, the following three sequences are identical:

int i; char j;
or
int i;
char j;
or
int i;

char j;

Similarly, the following sequences are identical:

i ¼ j þ 2;
or
i ¼ j

þ 2;

3.1.5 Case Sensitivity

In general, C language is case sensitive and variables with lowercase names are

different from those with uppercase names. Currently, however, mikroC variables are

not case sensitive (although future releases of mikroC may offer case sensitivity) so

the following variables are equivalent:

total TOTAL Total ToTal total totaL

The only exception is the identifiers main and interrupt, which must be written in

lowercase in mikroC. In this book we are assuming that the variables are case sensitive,

for the sake of compatibility with other C compilers, and variables with the same name

but different cases are not used.

www.newnespress.com

122 Chapter 3

3.1.6 Variable Names

In C language, variable names can begin with an alphabetical character or with the

underscore character. In essence, variable names can include any of the characters a to z

and A to Z, the digits 0 to 9, and the underscore character “_”. Each variable name

should be unique within the first 31 characters of its name. Variable names can contain

uppercase and lowercase characters (see Section 3.1.5), and numeric characters can be

used inside a variable name. Examples of valid variable names are:

Sum count sum100 counter i1 UserName
_myName

Some names are reserved for the compiler itself and cannot be used as variable names

in a program. Table 3.1 gives a list of these reserved names.

3.1.7 Variable Types

The mikroC language supports the variable types shown in Table 3.2. Examples of

variables are given in this section.

Table 3.1: mikroC reserved names

asm enum signed

auto extern sizeof

break float static

case for struct

char goto switch

const if typedef

continue int union

default long unsigned

do register void

double return volatile

else short while

www.newnespress.com

123C Programming Language

(unsigned) char or unsigned short (int)

The variables (unsigned) char, or unsigned short (int), are 8-bit unsigned variables with

a range of 0 to 255. In the following example two 8-bit variables named total and sum

are created, and sum is assigned decimal value 150:

unsigned char total, sum;
sum ¼ 150;

or

char total, sum;
sum ¼ 150;

Variables can be assigned values during their declaration. Thus, the above statements

can also be written as:

char total, sum ¼ 150;

Table 3.2: mikroC variable types

Type Size (bits) Range

unsigned char 8 0 to 255

unsigned short int 8 0 to 255

unsigned int 16 0 to 65535

unsigned long int 32 0 to 4294967295

signed char 8 �128 to 127

signed short int 8 �128 to 127

signed int 16 �32768 to 32767

signed long int 32 �2147483648 to 2147483647

float 32 �1.17549435082E-38 to �6.80564774407E38

double 32 �1.17549435082E-38 to �6.80564774407E38

long double 32 �1.17549435082E-38 to �6.80564774407E38

www.newnespress.com

124 Chapter 3

signed char or (signed) short (int)

The variables signed char, or (signed) short (int), are 8-bit signed character variables

with a range of �128 to þ127. In the following example a signed 8-bit variable named

counter is created with a value of �50:

signed char counter ¼ �50;

or

short counter ¼ �50;

or

short int counter ¼ �50;

(signed) int

Variables called (signed) int are 16-bit variables with a range �32768 to þ32767. In the

following example a signed integer named Big is created:

int Big;

unsigned (int)

Variables called (unsigned) int are 16-bit unsigned variables with a range 0 to 65535. In

the following example an unsigned 16-bit variable named count is created and is

assigned value 12000:

unsigned int count ¼ 12000;

(signed) long (int)

Variables called (signed) long (int) are 32 bits long with a range �2147483648 to

þ2147483647. An example is:

signed long LargeNumber;

unsigned long (int)

Variables called (unsigned) long (int) are 32-bit unsigned variables having the

range 0 to 4294967295. An example is:

unsigned long VeryLargeNumber;

www.newnespress.com

125C Programming Language

float or double or long double

The variables called float or double or long double, are floating point variables

implemented in mikroC using the Microchip AN575 32-bit format, which is

IEEE 754 compliant. Floating point numbers range from �1.17549435082E-38 to

�6.80564774407E38. In the following example, a floating point variable named area is

created and assigned the value 12.235:

float area;
area ¼ 12.235;

To avoid confusion during program development, specifying the sign of the variable

(signed or unsigned) as well as the type of variable is recommended. For example, use

unsigned char instead of char only, and unsigned int instead of unsigned only.

In this book we are using the following mikroC data types, which are easy to remember

and also compatible with most other C compilers:

unsigned char 0 to 255

signed char �128 to 127

unsigned int 0 to 65535

signed int �32768 to 32767

unsigned long 0 to 4294967295

signed long �2147483648 to 2147483647

float �1.17549435082E-38 to �6.80564774407E38

3.1.8 Constants

Constants represent fixed values (numeric or character) in programs that cannot be

changed. Constants are stored in the flash program memory of the PIC microcontroller,

thus not wasting valuable and limited RAM memory. In mikroC, constants can be

integers, floating points, characters, strings, or enumerated types.

Integer Constants

Integer constants can be decimal, hexadecimal, octal, or binary. The data type of a

constant is derived by the compiler from its value. But suffixes can be used to change

the type of a constant.

www.newnespress.com

126 Chapter 3

In Table 3.2 we saw that decimal constants can have values from �2147483648

to þ4294967295. For example, constant number 210 is stored as an unsigned

char (or unsigned short int). Similarly, constant number �200 is stored as a signed int.

Using the suffix u or U forces the constant to be unsigned. Using the suffix L or l forces

the constant to be long. Using both U (or u) and L (or l) forces the constant to be

unsigned long.

Constants are declared using the keyword const and are stored in the flash program

memory of the PIC microcontroller, thus not wasting valuable RAM space. In the

following example, constant MAX is declared as 100 and is stored in the flash program

memory of the PIC microcontroller:

const MAX ¼ 100;

Hexadecimal constants start with characters 0x or 0X and may contain numeric data

0 to 9 and hexadecimal characters A to F. In the following example, constant TOTAL is

given the hexadecimal value FF:

const TOTAL ¼ 0xFF;

Octal constants have a zero at the beginning of the number and may contain numeric

data 0 to 7. In the following example, constant CNT is given octal value 17:

const CNT ¼ 017;

Binary constant numbers start with 0b or 0B and may contain only 0 or 1. In the

following example a constant named Min is declared as having the binary value

11110000:

const Min ¼ 0b11110000

Floating Point Constants

Floating point constant numbers have integer parts, a dot, a fractional part, and an

optional e or E followed by a signed integer exponent. In the following example, a

constant named TEMP is declared as having the fractional value 37.50:

const TEMP ¼ 37.50

or

const TEMP ¼ 3.750E1

www.newnespress.com

127C Programming Language

Character Constants

A character constant is a character enclosed within single quote marks. In the following

example, a constant named First_Alpha is declared as having the character value “A”:

const First_Alpha ¼ ‘A’;

String Constants

String constants are fixed sequences of characters stored in the flash memory of the

microcontroller. The string must both begin and terminate with a double quote character

(“). The compiler automatically inserts a null character as a terminator. An example

string constant is:

“This is an example string constant”

A string constant can be extended across a line boundary by using a backslash

character (“ \”):

“This is first part of the string \
and this is the continuation of the string”

This string constant declaration is the same as:

“This is first part of the string and this is the continuation
of the string”

Enumerated Constants

Enumerated constants are integer type and are used to make a program easier to

follow. In the following example, constant colors stores the names of colors. The

first element is given the value 0:

enum colors {black, brown, red, orange, yellow, green, blue, gray,
white};

3.1.9 Escape Sequences

Escape sequences are used to represent nonprintable ASCII characters. Table 3.3

shows some commonly used escape sequences and their representation in C language.

For example, the character combination “ \ n” represents the newline character.

www.newnespress.com

128 Chapter 3

An ASCII character can also be represented by specifying its hexadecimal code after a

backslash. For example, the newline character can also be represented as “\x0A”.

3.1.10 Static Variables

Static variables are local variables used in functions (see Chapter 4) when the last value

of a variable between successive calls to the function must be preserved. As the

following example shows, static variables are declared using the keyword static:

static unsigned int count;

3.1.11 External Variables

Using the keyword extern before a variable name declares that variable as external. It

tells the compiler that the variable is declared elsewhere in a separate source code

module. In the following example, variables sum1 and sum2 are declared as external

unsigned integers:

extern int sum1, sum2;

Table 3.3: Some commonly used escape sequences

Escape sequence Hex value Character

\a 0�07 BEL (bell)

\b 0�08 BS (backspace)

\t 0�09 HT (horizontal tab)

\n 0�0A LF (linefeed)

\v 0�0B VT (vertical feed)

\f 0�0C FF (formfeed)

\r 0�0D CR (carriage return)

\xH String of hex digits

www.newnespress.com

129C Programming Language

3.1.12 Volatile Variables

Volatile variables are especially important in interrupt-based programs and input-output

routines. Using the keyword volatile indicates that the value of the variable may change

during the lifetime of the program independent of the normal flow of the program.

Variables declared as volatile are not optimized by the compiler, since their values can

change unexpectedly. In the following example, variable Led is declared as a volatile

unsigned char:

volatile unsigned char Led;

3.1.13 Enumerated Variables

Enumerated variables are used to make a program more readable. In an enumerated

variable, a list of items is specified and the value of the first item is set to 0, the next

item is set to 1, and so on. In the following example, type Week is declared as an

enumerated list and MON ¼ 0, TUE ¼ 1, WED ¼ 2, and so on):

enum Week {MON, TUE, WED, THU, FRI, SAT, SUN};

It is possible to imply the values of the elements in an enumerated list. In the

following example, black ¼ 2, blue ¼ 3, red ¼ 4, and so on.

enum colors {black ¼ 2, blue, red, white, gray};

Similarly, in the following example, black ¼ 2, blue ¼ 3, red ¼ 8, and gray ¼ 9:

enum colors {black ¼ 2, blue, red ¼ 8, gray};

Variables of type enumeration can be declared by specifying them after the list of

items. For example, to declare variable My_Week of enumerated type Week, use the

following statement:

enum Week {MON, TUE, WED, THU, FRI, SAT, SUN} My_Week;

Now we can use variable My_Week in a program:

My_Week ¼ WED // assign 2 to My_Week

or

My_Week ¼ 2 // same as above

www.newnespress.com

130 Chapter 3

After defining the enumerated type Week, we can declare variables This_Week and

Next_Week of type Week as:

enum Week This_Week, Next_Week;

3.1.14 Arrays

Arrays are used to store related items in the same block of memory and under a

specified name. An array is declared by specifying its type, name, and the number of

elements it will store. For example:

unsigned int Total[5];

This array of type unsigned int has the name Total and has five elements. The first

element of an array is indexed with 0. Thus, in this example, Total[0] refers to the first

element of the array and Total[4] refers to the last element. The array Total is stored in

memory in five consecutive locations as follows:

Total[0]

Total[1]

Total[2]

Total[3]

Total[4]

Data can be stored in the array by specifying the array name and index. For example, to

store 25 in the second element of the array we have to write:

Total[1] ¼ 25;

Similarly, the contents of an array can be read by specifying the array name and its

index. For example, to copy the third array element to a variable called Temp we have

to write:

Temp ¼ Total[2];

The contents of an array can be initialized during the declaration of the array by

assigning a sequence of comma-delimited values to the array. An example follows

where array months has twelve elements and months[0] ¼ 31, months[1] ¼ 28, and

so on:

unsigned char months[12] ¼ {31,28,31,30,31,30,31,31,30,31,30,31};

www.newnespress.com

131C Programming Language

The same array can also be declared without specifying its size:

unsigned char months[] ¼ {31,28,31,30,31,30,31,31,30,31,30,31};

Character arrays can be declared similarly. In the following example, a character array

named Hex_Letters is declared with 6 elements:

unsigned char Hex_Letters[] ¼ {‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’};

Strings are character arrays with a null terminator. Strings can be declared either by

enclosing the string in double quotes, or by specifying each character of the array within

single quotes and then terminating the string with a null character. The two string

declarations in the following example are identical, and both occupy five locations in

memory:

unsigned char Mystring[] ¼ “COMP”;

and

unsigned char Mystring[] ¼ {‘C’, ‘O’, ‘M’, ‘P’, ‘\0’};

In C programming language, we can also declare arrays with multiple dimensions.

One-dimensional arrays are usually called vectors, and two-dimensional arrays are called

matrices. A two-dimensional array is declared by specifying the data type of the array, the

array name, and the size of each dimension. In the following example, a two-dimensional

array named P is created having three rows and four columns. Altogether, the array has

twelve elements. The first element of the array is P[0][0], and the last element is P[2][3].

The structure of this array is shown below:

P[0][0] P[0][1] P[0][2] P[0][3]

P[1][0] P[1][1] P[1][2] P[1][3]

P[2][0] P[2][1] P[2][2] P[2][3]

Elements of a multidimensional array can be specified during the declaration of the

array. In the following example, two-dimensional array Q has two rows and two

columns, its diagonal elements are set to 1, and its nondiagonal elements are

cleared to 0:

unsigned char Q[2][2] ¼ { {1,0}, {0,1} };

www.newnespress.com

132 Chapter 3

3.1.15 Pointers

Pointers are an important part of the C language, as they hold the memory addresses

of variables. Pointers are declared in the same way as other variables, but with the

character (“*”) in front of the variable name. In general, pointers can be created to point

to (or hold the addresses of) character variables, integer variables, long variables,

floating point variables, or functions (although mikroC currently does not support

pointers to functions).

In the following example, an unsigned character pointer named pnt is declared:

unsigned char *pnt;

When a new pointer is created, its content is initially unspecified and it does not hold

the address of any variable. We can assign the address of a variable to a pointer using

the (“&”) character:

pnt ¼ &Count;

Now pnt holds the address of variable Count. Variable Count can be set to a value by

using the character (“*”) in front of its pointer. For example, Count can be set to 10

using its pointer:

*pnt ¼ 10; // Count ¼ 10

which is the same as

Count ¼ 10; // Count ¼ 10

Or, the value of Count can be copied to variable Cnt using its pointer:

Cnt ¼ *pnt; // Cnt ¼ Count

Array Pointers

In C language the name of an array is also a pointer to the array. Thus, for the array:

unsigned int Total[10];

The name Total is also a pointer to this array, and it holds the address of the first

element of the array. Thus the following two statements are equal:

Total[2] ¼ 0;

www.newnespress.com

133C Programming Language

and

*(Total þ 2) ¼ 0;

Also, the following statement is true:

&Total[j] ¼ Total þ j

In C language we can perform pointer arithmetic which may involve:

� Comparing two pointers

� Adding or subtracting a pointer and an integer value

� Subtracting two pointers

� Assigning one pointer to another

� Comparing a pointer to null

For example, let’s assume that pointer P is set to hold the address of array

element Z[2]:

P ¼ &Z[2];

We can now clear elements 2 and 3 of array Z, as in the two examples that follow. The

two examples are identical except that in the first example pointer P holds the address

of Z[3] at the end of the statements, and it holds the address of Z[2] at the end of the

second set of statements:

*P ¼ 0; // Z[2] ¼ 0
P ¼ P þ 1; // P now points to element 3 of Z
*P ¼ 0; // Z[3] ¼ 0

or

*P ¼ 0; // Z[2] ¼ 0
*(P þ 1) ¼ 0; // Z[3] ¼ 0

A pointer can be assigned to another pointer. In the following example, variables Cnt

and Tot are both set to 10 using two different pointers:

unsigned int *i, *j; // declare 2 pointers
unsigned int Cnt, Tot; // declare two variables

www.newnespress.com

134 Chapter 3

i ¼ &Cnt; // i points to Cnt
*i ¼ 10; // Cnt ¼ 10
j ¼ i; // copy pointer i to pointer j
Tot ¼ *j; // Tot ¼ 10

3.1.16 Structures

A structure can be used to collect related items that are then treated as a single object.

Unlike an array, a structure can contain a mixture of data types. For example, a

structure can store the personal details (name, surname, age, date of birth, etc.) of a

student.

A structure is created by using the keyword struct, followed by a structure name and a

list of member declarations. Optionally, variables of the same type as the structure can

be declared at the end of the structure.

The following example declares a structure named Person:

struct Person
{

unsigned char name[20];
unsigned char surname[20];
unsigned char nationality[20];
unsigned char age;

}

Declaring a structure does not occupy any space in memory; rather, the compiler

creates a template describing the names and types of the data objects or member

elements that will eventually be stored within such a structure variable. Only

when variables of the same type as the structure are created do these variables

occupy space in memory. We can declare variables of the same type as the

structure by giving the name of the structure and the name of the variable.

For example, two variables Me and You of type Person can be created by

the statement:

struct Person Me, You;

Variables of type Person can also be created during the declaration of the structure

as follows:

www.newnespress.com

135C Programming Language

struct Person
{

unsigned char name[20];
unsigned char surname[20];
unsigned char nationality[20];
unsigned char age;

} Me, You;

We can assign values to members of a structure by specifying the name of the structure,

followed by a dot (“.”) and the name of the member. In the following example, the age

of structure variable Me is set to 25, and variable M is assigned to the value of age in

structure variable You:

Me.age ¼ 25;
M ¼ You.age;

Structure members can be initialized during the declaration of the structure. In the

following example, the radius and height of structure Cylinder are initialized to 1.2 and

2.5 respectively:

struct Cylinder
{

float radius;
float height;

} MyCylinder ¼ {1.2, 2.5};

Values can also be set to members of a structure using pointers by defining the variable

types as pointers. For example, if TheCylinder is defined as a pointer to structure

Cylinder, then we can write:

struct Cylinder
{

float radius;
float height;

} *TheCylinder;

TheCylinder �> radius ¼ 1.2;
TheCylinder �> height ¼ 2.5;

The size of a structure is the number of bytes contained within the structure. We can use

the sizeof operator to get the size of a structure. Considering the above example,

sizeof(MyCylinder)

returns 8, since each float variable occupies 4 bytes in memory.

www.newnespress.com

136 Chapter 3

Bit fields can be defined using structures. With bit fields we can assign identifiers to

bits of a variable. For example, to identify bits 0, 1, 2, and 3 of a variable as LowNibble

and to identify the remaining 4 bits as HighNibble we can write:

struct
{

LowNibble : 4;
HighNibble : 4;

} MyVariable;

We can then access the nibbles of variable MyVariable as:

MyVariable.LowNibble ¼ 12;
MyVariable.HighNibble ¼ 8;

In C language we can use the typedef statements to create new types of variables. For

example, a new structure data type named Reg can be created as follows:

typedef struct
{

unsigned char name[20];
unsigned char surname[20];
unsigned age;

} Reg;

Variables of type Reg can then be created in the same way other types of variables are

created. In the following example, variables MyReg, Reg1, and Reg2 are created from

data type Reg:

Reg MyReg, Reg1, Reg2;

The contents of one structure can be copied to another structure, provided that both

structures are derived from the same template. In the following example, structure

variables of the same type, P1 and P2, are created, and P2 is copied to P1:

struct Person
{

unsigned char name[20];
unsigned char surname[20];
unsigned int age;
unsigned int height;
unsigned weight;

}
struct Person P1, P2;

www.newnespress.com

137C Programming Language

. .

. .
P2 ¼ P1;

3.1.17 Unions

Unions are used to overlay variables. A union is similar to a structure and is even

defined in a similar manner. Both are based on templates, and the members of both are

accessed using the “.” or “->” operators. A union differs from a structure in that all

variables in a union occupy the same memory area, that is, they share the same storage.

An example of a union declaration is:

union flags
{

unsigned char x;
unsigned int y;

} P;

In this example, variables x and y occupy the same memory area, and the size of this

union is 2 bytes long, which is the size of the biggest member of the union. When

variable y is loaded with a 2-byte value, variable x will have the same value as the low

byte of y. In the following example, y is loaded with 16-bit hexadecimal value

0xAEFA, and x is loaded with 0xFA:

P.y ¼ 0xAEFA;

The size of a union is the size (number of bytes) of its largest member. Thus, the

statement:

sizeof(P)

returns 2.

This union can also be declared as:

union flags
{

unsigned char x;
unsigned int y;

}
union flags P;

www.newnespress.com

138 Chapter 3

3.1.18 Operators in C

Operators are applied to variables and other objects in expressions to cause certain

conditions or computations to occur.

mikroC language supports the following operators:

� Arithmetic operators

� Relational operators

� Logical operators

� Bitwise operators

� Assignment operators

� Conditional operators

� Preprocessor operators

Arithmetic Operators

Arithmetic operators are used in arithmetic computations. Arithmetic operators

associate from left to right, and they return numerical results. The mikroC arithmetic

operators are listed in Table 3.4.

Table 3.4: mikroC arithmetic operators

Operator Operation

þ Addition

� Subtraction

* Multiplication

/ Division

% Remainder (integer division)

þþ Auto increment

�� Auto decrement

www.newnespress.com

139C Programming Language

The following example illustrates the use of arithmetic operators:

/* Adding two integers */
5 þ 12 // equals 17

/* Subtracting two integers */

120 – 5 // equals 115
10 – 15 // equals �5

/* Dividing two integers */

5 / 3 // equals 1
12 / 3 // equals 4

/* Multiplying two integers */

3 * 12 // equals 36

/* Adding two floating point numbers */

3.1 þ 2.4 // equals 5.5

/* Multiplying two floating point numbers */

2.5 * 5.0 // equals 12.5

/* Dividing two floating point numbers */

25.0 / 4.0 // equals 6.25

/* Remainder (not for float) */

7 % 3 // equals 1

/* Post-increment operator */

j ¼ 4;
k ¼ jþþ; // k ¼ 4, j ¼ 5

/* Pre-increment operator */

j ¼ 4;
k ¼ þþj; // k ¼ 5, j ¼ 5

/* Post-decrement operator */

j ¼ 12;
k ¼ j��; // k ¼ 12, j ¼ 11

www.newnespress.com

140 Chapter 3

/* Pre-decrement operator */

j ¼ 12;
k ¼ ��j; // k ¼ 11, j ¼ 11

Relational Operators

Relational operators are used in comparisons. If the expression evaluates to TRUE, a 1

is returned; otherwise a 0 is returned.

All relational operators associate from left to right. A list of mikroC relational operators

is given in Table 3.5.

The following example illustrates the use of relational operators:

x ¼ 10
x > 8 // returns 1
x ¼ ¼ 10 // returns 1
x < 100 // returns 1
x > 20 // returns 0
x !¼ 10 // returns 0
x >¼ 10 // returns 1
x <¼ 10 // returns 1

Logical Operators

Logical operators are used in logical and arithmetic comparisons, and they return TRUE

(i.e., logical 1) if the expression evaluates to nonzero, and FALSE (i.e., logical 0) if the

Table 3.5: mikroC relational operators

Operator Operation

¼ ¼ Equal to

!¼ Not equal to

> Greater than

< Less than

>¼ Greater than or equal to

<¼ Less than or equal to

www.newnespress.com

141C Programming Language

expression evaluates to zero. If more than one logical operator is used in a statement,

and if the first condition evaluates to FALSE, the second expression is not evaluated.

The mikroC logical operators are listed in Table 3.6.

The following example illustrates the use of logical operators:

/* Logical AND */
x ¼ 7;

x > 0 && x < 10 // returns 1

x > 0 || x < 10 // returns 1
x >¼0 && x <¼10 // returns 1
x >¼0 && x < 5 // returns 0

a ¼ 10; b ¼ 20; c ¼ 30; d ¼ 40;

a > b && c > d // returns 0
b > a && d > c // returns 1
a > b || d > c // returns 1

Bitwise Operators

Bitwise operators are used to modify the bits of a variable. The mikroC bitwise

operators are listed in Table 3.7.

Bitwise AND returns 1 if both bits are 1, otherwise it returns 0.

Bitwise OR returns 0 if both bits are 0, otherwise it returns 1.

Bitwise XOR returns 1 if both bits are complementary, otherwise it returns 0.

Bitwise complement inverts each bit.

Bitwise shift left and shift right move the bits to the left or right respectively.

Table 3.6: mikroC logical operators

Operator Operation

&& AND

|| OR

! NOT

www.newnespress.com

142 Chapter 3

The following example illustrates the use of bitwise operators:

i. 0xFA & 0xEE returns 0xEA
0xFA: 1111 1010
0xEE: 1110 1110
- - - - - - - - - - - -
0xEA: 1110 1010

ii. 0x01 | 0xFE returns 0xFF
0x08: 0000 0001
0xFE: 1111 1110
- - - - - - - - - - - -
0xFE: 1111 1111

iii. 0xAA ∧ 0x1F returns
0xAA: 1010 1010
0x1F: 0001 1111
- - - - - - - - - - - -
0xB5: 1011 0101

iv. �0xAA returns 0x
0xAA: 1010 1010
� : 0101 0101
- - - - - - - - - - - -
0x55: 0101 0101

Table 3.7: mikroC bitwise operators

Operator Operation

& Bitwise AND

| Bitwise OR

∧ Bitwise EXOR

� Bitwise complement

<< Shift left

>> Shift right

www.newnespress.com

143C Programming Language

v. 0x14 >> 1 returns 0x08 (shift 0x14 right by 1 digit)
0x14: 0001 0100
>>1 : 0000 1010
- - - - - - - - - - - -
0x0A: 0000 1010

vi. 0x14 >> 2 returns 0x05 (shift 0x14 right by 2 digits)
0x14: 0001 0100
>> 2: 0000 0101
- - - - - - - - - - - -
0x05: 0000 0101

vii. 0x235A << 1 returns 0x46B4 (shift left 0x235A left by 1 digit)
0x235A: 0010 0011 0101 1010
<<1 : 0100 0110 1011 0100
- - - - - - - - - - - - - - - - - - -
0x46B4 : 0100 0110 1011 0100

viii. 0x1A << 3 returns 0xD0 (shift left 0x1A by 3 digits)
0x1A: 0001 1010
<<3 : 1101 0000
- - - - - - - - - - - -
0xD0: 1101 0000

Assignment Operators

In C language there are two types of assignments: simple and compound. In simple

assignments an expression is simply assigned to another expression, or an operation is

performed using an expression and the result is assigned to another expression:

Expression1 ¼ Expression2

or

Result ¼ Expression1 operation Expression2

Examples of simple assignments are:

Temp ¼ 10;
Cnt ¼ Cnt þ Temp;

Compound assignments have the general format:

Result operation ¼ Expression1

www.newnespress.com

144 Chapter 3

Here the specified operation is performed on Expression1 and the result is stored in

Result. For example:

j þ¼ k; is same as: j ¼ j þ k;

also

p *¼ m; is same as p ¼ p * m;

The following compound operators can be used in mikroC programs:

þ¼ �¼ *¼ /¼ %¼
&¼ |¼ ∧¼ >>¼ <<¼

Conditional Operators

The syntax of a conditional operator is:

Result ¼ Expression1 ? Expression2 : Expression3

Expression1 is evaluated first, and if its value is true, Expression2 is assigned to Result,

otherwise Expression3 is assigned to Result. In the following example, the maximum

of x and y is found where x is compared with y and if x > y then max ¼ x,

otherwise max ¼ y:

max ¼ ðx > yÞ ? x : y;

In the following example, lowercase characters are converted to uppercase. If the

character is lowercase (between a and z), then by subtracting 32 from the character

we obtain the equivalent uppercase character:

c ¼ ðc > ¼ a && c < ¼ zÞ ? ðc� 32) : c;

Preprocessor Operators

The preprocessor allows a programmer to:

� Compile a program conditionally, such that parts of the code are not compiled

� Replace symbols with other symbols or values

� Insert text files into a program

www.newnespress.com

145C Programming Language

The preprocessor operator is the (“#”) character, and any line of code leading with a

(“#”) is assumed to be a preprocessor command. The semicolon character (“;”) is not

needed to terminate a preprocessor command.

mikroC compiler supports the following preprocessor commands:

#define #undef
#if #elif #endif
#ifdef #ifndef
#error
#line

#define, #undef, #ifdef, #ifndef The #define preprocessor command provides macro

expansion where every occurrence of an identifier in the program is replaced with

the value of that identifier. For example, to replace every occurrence of MAX

with value 100 we can write:

#define MAX 100

An identifier that has already been defined cannot be defined again unless both

definitions have the same value. One way to get around this problem is to remove the

macro definition:

#undef MAX

Alternatively, the existence of a macro definition can be checked. In the following

example, if MAX has not already been defined, it is given value 100, otherwise the

#define line is skipped:

#ifndef MAX
#define MAX 100

#endif

Note that the #define preprocessor command does not occupy any space in memory.

We can pass parameters to a macro definition by specifying the parameters in a

parenthesis after the macro name. For example, consider the macro definition:

#define ADD(a, b) (a þ b)

When this macro is used in a program, (a, b) will be replaced with (a þ b) as shown:

p ¼ ADD(x, y) will be transformed into p ¼ (x þ y)

www.newnespress.com

146 Chapter 3

Similarly, we can define a macro to calculate the square of two numbers:

#define SQUARE(a) (a * a)

We can now use this macro in a program:

p ¼ SQUARE(x) will be transformed into p ¼ (x * x)

#include The preprocessor directive #include is used to include a source file in our

program. Usually header files with extension “.h” are used with #include. There are two

formats for using #include:

#include <file>

and

#include “file”

In first option the file is searched in the mikroC installation directory first and then

in user search paths. In second option the specified file is searched in the mikroC

project folder, then in the mikroC installation folder, and then in user search paths.

It is also possible to specify a complete directory path as:

#include “C:\temp\last.h”

The file is then searched only in the specified directory path.

#if, #elif, #else, #endif The preprocessor commands #if, #elif, #else, and #endif are

used for conditional compilations, where parts of the source code can be compiled only

if certain conditions are met. In the following example, the code section where variables

A and B are cleared to zero is compiled if M has a nonzero value, otherwise the

code section where A and B are both set to 1 is compiled. Notice that the #if must

be terminated with #endif:

#if M
A ¼ 0;
B ¼ 0;

#else
A ¼ 1;
B ¼ 1;

#endif

www.newnespress.com

147C Programming Language

We can also use the #elif condition, which tests for a new condition if the previous

condition was false:

#if M
A ¼ 0;
B ¼ 0;

#elif N
A ¼ 1;
B ¼ 1;

#else
A ¼ 2;
B ¼ 2;

#endif

In the above example, if M has a nonzero value code section, A ¼ 0; B ¼ 0; are

compiled. Otherwise, if N has a nonzero value, then code section A ¼ 1; B ¼ 1; is

compiled. Finally, if both M and N are zero, then code section A ¼ 2; B ¼ 2; is

compiled. Notice that only one code section is compiled between #if and #endif and

that a code section can contain any number of statements.

3.1.19 Modifying the Flow of Control

Statements are normally executed sequentially from the beginning to the end of

a program. We can use control statements to modify this normal sequential flow

in a C program. The following control statements are available in mikroC programs:

� Selection statements

� Unconditional modifications of flow

� Iteration statements

Selection Statements

There are two selection statements: if and switch.

if Statement The general format of the if statement is:

if(expression)

Statement1;

www.newnespress.com

148 Chapter 3

else

Statement2;

or

if(expression)Statement1; else Statement2;

If the expression evaluates to TRUE, Statement1 is executed, otherwise Statement2 is

executed. The else keyword is optional and may be omitted. In the following example,

if the value of x is greater than MAX then variable P is incremented by 1, otherwise it is

decremented by 1:

if(x > MAX)
Pþþ;

else
P��;

We can have more than one statement by enclosing the statements within curly

brackets. For example:

if(x > MAX)
{

Pþþ;
Cnt ¼ P;
Sum ¼ Sum þ Cnt;

}
else

P��;

In this example, if x is greater than MAX then the three statements within the curly

brackets are executed, otherwise the statement P�� is executed.

Another example using the if statement is:

if(x > 0 && x < 10)
{

Total þ¼ Sum;
Sumþþ;

}
else
{

Total ¼ 0;
Sum ¼ 0;

}

www.newnespress.com

149C Programming Language

switch Statement The switch statement is used when a number of conditions and

different operations are performed if a condition is true. The syntax of the switch

statement is:

switch (condition)
{

case condition1:
Statements;
break;

case condition2:
Statements;
break;

. .

. .
case condition:

Statements;
break;

default:
Statements;

}

The switch statement functions as follows: First the condition is evaluated. The

condition is then compared to condition1 and if a match is found, statements in that case

block are evaluated and control jumps outside the switch statement when the break

keyword is encountered. If a match is not found, condition is compared to condition2

and if a match is found, statements in that case block are evaluated and control jumps

outside the switch statements, and so on. The default is optional, and statements

following default are evaluated if the condition does not match any of the conditions

specified after the case keywords.

In the following example, the value of variable Cnt is evaluated. If Cnt ¼ 1, A is set to

1. If Cnt ¼ 10, B is set to 1, and if Cnt ¼ 100, C is set to 1. If Cnt is not equal to 1, 10,

or 100 then D is set to 1:

switch (Cnt)
{

case 1:
A ¼ 1;
break;

case 10:
B ¼ 1;
break;

www.newnespress.com

150 Chapter 3

case 100:
C ¼ 1;
break;

default:
D ¼ 1;

}

Because white spaces are ignored in C language we can also write the preceding

code as:

switch (Cnt)
{

case 1: A ¼ 1; break;
case 10: B ¼ 1; break;
case 100: C ¼ 1; break;
default: D ¼ 1;

}

Example 3.1

In an experiment the relationship between X and Y values are found to be:

X Y
1 3.2
2 2.5
3 8.9
4 1.2
5 12.9

Write a switch statement that will return the Y value, given the X value.

Solution 3.1

The required switch statement is:

switch (X)
{

case 1:
Y ¼ 3.2;
break;

case 2:
Y ¼ 2.5;
break;

www.newnespress.com

151C Programming Language

case 3:
Y ¼ 8.9;
break;

case 4:
Y ¼ 1.2;
break;

case 5:
Y ¼ 12.9;

}

Iteration Statements

Iteration statements enable us to perform loops in a program, where part of a code must

be repeated a number of times. In mikroC iteration can be performed in four ways. We

will look at each one with examples:

� Using for statement

� Using while statement

� Using do statement

� Using goto statement

for Statement The syntax of a for statement is:

for(initial expression; condition expression; increment expression)
{

Statements;
}

The initial expression sets the starting variable of the loop, and this variable is

compared against the condition expression before entry into the loop. Statements inside

the loop are executed repeatedly, and after each iteration the value of the increment

expression is incremented. The iteration continues until the condition expression

becomes false. An endless loop is formed if the condition expression is always true.

The following example shows how a loop can be set up to execute 10 times. In this

example, variable i starts from 0 and increments by 1 at the end of each iteration. The

loop terminates when i ¼10, in which case the condition i < 10 becomes false. On exit

from the loop, the value of i is 10:

www.newnespress.com

152 Chapter 3

for(i ¼ 0; i < 10; i þþ)
{

statements;
}

This loop could also be started by an initial expression with a nonzero value. Here, i

starts with 1 and the loop terminates when i ¼ 11. Thus, on exit from the loop, the value

of i is 11:

for(i ¼ 1; i <¼ 10; iþþ)
{

Statements;
}

The parameters of a for loop are all optional and can be omitted. If the condition

expression is left out, it is assumed to be true. In the following example, an endless loop

is formed where the condition expression is always true and the value of i starts with

0 and is incremented after each iteration:

/* Endless loop with incrementing i */
for(i=0; ; iþþ)
{

Statements;
}

In the following example of an endless loop all the parameters are omitted:

/* Example of endless loop */
for(; ;)
{

Statements;
}

In the following endless loop, i starts with 1 and is not incremented inside

the loop:

/* Endless loop with i ¼ 1 */
for(i=1; ;)
{

Statements;
}

www.newnespress.com

153C Programming Language

If there is only one statement inside the for loop, he curly brackets can be omitted as

shown in the following example:

for(k ¼ 0; k < 10; kþþ)Total ¼ Total þ Sum;

Nested for loops can also be used. In a nested for loop, the inner loop is executed for

each iteration of the outer loop. In the following example the inner loop is executed five

times and the outer loop is executed ten times. The total iteration count is fifty:

/* Example of nested for loops */
for(i ¼ 0; i < 10; iþþ)
{

for(j ¼ 0; j < 5; jþþ)
{

Statements;
}

}

In the following example, the sum of all the elements of a 3 � 4 matrix M is calculated

and stored in a variable called Sum:

/* Add all elements of a 3x4 matrix */
Sum ¼ 0;
for(i ¼ 0; i < 3; iþþ)
{

for(j ¼ 0; j < 4; jþþ)
{

Sum ¼ Sum þ M [i][j];
}

}

Since there is only one statement to be executed, the preceding example could also be

written as:

/* Add all elements of a 3x4 matrix */
Sum ¼ 0;
for(i ¼ 0; i < 3; iþþ)
{

for(j ¼ 0; j < 4; jþþ) Sum ¼ Sum þ M [i][j];
}

www.newnespress.com

154 Chapter 3

while Statement The syntax of a while statement is:

while (condition)
{

Statements;
}

Here, the statements are executed repeatedly until the condition becomes false, or the

statements are executed repeatedly as long as the condition is true. If the condition is

false on entry to the loop, then the loop will not be executed and the program will

continue from the end of the while loop. It is important that the condition is changed

inside the loop, otherwise an endless loop will be formed.

The following code shows how to set up a loop to execute 10 times, using the while

statement:

/* A loop that executes 10 times */
k ¼ 0;
while (k < 10)
{

Statements;
kþþ;

}

At the beginning of the code, variable k is 0. Since k is less than 10, the while loop

starts. Inside the loop the value of k is incremented by 1 after each iteration. The loop

repeats as long as k < 10 and is terminated when k ¼ 10. At the end of the loop the

value of k is 10.

Notice that an endless loop will be formed if k is not incremented inside the loop:

/* An endless loop */
k ¼ 0;
while (k < 10)
{

Statements;
}

An endless loop can also be formed by setting the condition to be always true:

/* An endless loop */
while (k ¼ k)
{

Statements;
}

www.newnespress.com

155C Programming Language

Here is an example of calculating the sum of numbers from 1 to 10 and storing the

result in a variable called sum:

/* Calculate the sum of numbers from 1 to 10 */
unsigned int k, sum;
k ¼ 1;
sum ¼ 0;
while(k <¼ 10)
{

sum ¼ sum þ k;
kþþ;

}

It is possible to have a while statement with no body. Such a statement is useful, for

example, if we are waiting for an input port to change its value. An example follows

where the program will wait as long as bit 0 of PORTB (PORTB.0) is at logic 0. The

program will continue when the port pin changes to logic 1:

while(PORTB.0 ¼¼ 0); // Wait until PORTB.0 becomes 1

or

while(PORTB.0);

It is also possible to have nested while statements.

do Statement A do statement is similar to a while statement except that the loop

executes until the condition becomes false, or, the loop executes as long as the

condition is true. The condition is tested at the end of the loop. The syntax of a do

statement is:

do
{

Statements;
} while (condition);

The first iteration is always performed whether the condition is true or false. This is the

main difference between a while statement and a do statement.

The following code shows how to set up a loop to execute 10 times using the do

statement:

www.newnespress.com

156 Chapter 3

/* Execute 10 times */
k ¼ 0;
do
{

Statements;
kþþ;

} while (k < 10);

The loop starts with k ¼ 0, and the value of k is incremented inside the loop after each

iteration. At the end of the loop k is tested, and if k is not less than 10, the loop

terminates. In this example because k ¼ 0 is at the beginning of the loop, the value of k

is 10 at the end of the loop.

An endless loop will be formed if the condition is not modified inside the loop, as

shown in the following example. Here k is always less than 10:

/* An endless loop */
k ¼ 0;
do
{

Statements;
} while (k < 10);

An endless loop can also be created if the condition is set to be true all the time:

/* An endless loop */
do
{

Statements;
} while (k ¼ k);

It is also possible to have nested do statements.

Unconditional Modifications of Flow

goto Statement A goto statement can be used to alter the normal flow of control in a

program. It causes the program to jump to a specified label. A label can be any

alphanumeric character set starting with a letter and terminating with the colon (“:”)

character.

Although not recommended, a goto statement can be used together with an if statement

to create iterations in a program. The following example shows how to set up a loop to

execute 10 times using goto and if statements:

www.newnespress.com

157C Programming Language

/* Execute 10 times */
k ¼ 0;
Loop:

Statements;
kþþ;

if(k < 10)goto Loop;

The loop starts with label Loop and variable k ¼ 0 at the beginning of the loop. Inside

the loop the statements are executed and k is incremented by 1. The value of k is then

compared with 10 and the program jumps back to label Loop if k < 10. Thus, the loop

is executed 10 times until the condition at the end becomes false. At the end of the loop

the value of k is 10.

continue and break Statements continue and break statements can be used inside

iterations to modify the flow of control. A continue statement is usually used with an if

statement and causes the loop to skip an iteration. An example follows that calculates

the sum of numbers from 1 to 10 except number 5:

/* Calculate sum of numbers 1,2,3,4,6,7,8,9,10 */
Sum ¼ 0;
i ¼ 1;
for(i ¼ 1; i <¼ 10; iþþ)
{

if(i ¼¼ 5) continue; // Skip number 5
Sum ¼ Sum þ i;

}

Similarly, a break statement can be used to terminate a loop from inside the loop. In the

following example, the sum of numbers from 1 to 5 is calculated even though the loop

parameters are set to iterate 10 times:

/* Calculate sum of numbers 1,2,3,4,5 */
Sum ¼ 0;
i ¼ 1;
for(i ¼ 1; i <¼ 10; iþþ)
{

if(i > 5) break; // Stop loop if i > 5
Sum ¼ Sum þ i;

}

www.newnespress.com

158 Chapter 3

3.1.20 Mixing mikroC with Assembly Language Statements

It sometimes becomes necessary to mix PIC microcontroller assembly language

statements with the mikroC language. For example, very accurate program delays can

be generated by using assembly language statements. The topic of assembly language

is beyond the scope of this book, but techniques for including assembly language

instructions in mikroC programs are discussed in this section for readers who are

familiar with the PIC microcontroller assembly languages.

Assembly language instructions can be included in a mikroC program by using the

keyword asm (or _asm, or __asm). A group of assembly instructions or a single such

instruction can be included within a pair of curly brackets. The syntax is:

asm
{

assembly instructions
}

Assembly language style comments (a line starting with a semicolon character) are not

allowed, but mikroC does allow both types of C style comments to be used with

assembly language programs:

asm
{

/* This assembly code introduces delay to the program*/
MOVLW 6 // Load W with 6
.
.

}

User-declared C variables can be used in assembly language routines, but they must be

declared and initialized before use. For example, C variable Temp can be initialized and

then loaded to the W register as:

unsigned char Temp ¼ 10;
asm
{

MOVLW Temp // W ¼ Temp ¼ 10
.
.

}

www.newnespress.com

159C Programming Language

Global symbols such as predefined port names and register names can be used in

assembly language routines without having to initialize them:

asm
{

MOVWF PORTB
. .
. .

}

3.2 PIC Microcontroller Input-Output
Port Programming

Depending on the type of microcontroller used, PIC microcontroller input-output ports

are named as PORTA, PORTB, PORTC, and so on. Port pins can be in analog or digital

mode. In analog mode, ports are input only and a built-in analog-to-digital converter

and multiplexer circuits are used. In digital mode, a port pin can be configured as either

input or output. The TRIS registers control the port directions, and there are TRIS

registers for each port, named as TRISA, TRISB, TRISC, and so on. Clearing a TRIS

register bit to 0 sets the corresponding port bit to output mode. Similarly, setting a TRIS

register bit to 1 sets the corresponding port bit to input mode.

Ports can be accessed as a single 8-bit register, or individual bits of a port can be

accessed. In the following example, PORTB is configured as an output port and all its

bits are set to a 1:

TRISB ¼ 0; // Set PORTB as output
PORTB ¼ 0xFF; // Set PORTB bits to 1

Similarly, the following example shows how the 4 upper bits of PORTC can be set as

input and the 4 lower bits of PORTC can be set as output:

TRISC ¼ 0xF0;

Bits of an input-output port can be accessed by specifying the required bit number. In

the following example, variable P2 is loaded with bit 2 of PORTB:

P2 ¼ PORTB.2;

All the bits of a port can be complemented by the statement:

PORTB ¼ �PORTB;

www.newnespress.com

160 Chapter 3

3.3 Programming Examples

In this section, some simple programming examples are given to familiarize the reader

with programming in C.

Example 3.2

Write a program to set all eight port pins of PORTB to logic 1.

Solution 3.2

PORTB is configured as an output port, and then all port pins are set to logic 1 by

sending hexadecimal number 0xFF:

void main()
{

TRISB ¼ 0; // Configure PORTB as output
PORTB ¼ 0xFF; // Set all port pins to logic a

}

Example 3.3

Write a program to set the odd-numbered PORTB pins (bits 1, 3, 5, and 7) to logic 1.

Solution 3.3

Odd-numbered port pins can be set to logic 1 by sending the bit pattern 10101010

to the port. This bit pattern is the hexadecimal number 0xAA and the required

program is:

void main()
{

TRISB ¼ 0; // Configure PORTB as output
PORTB ¼ 0xAA; // Turn on odd numbered port pins

}

Example 3.4

Write a program to continuously count up in binary and send this data to PORTB. Thus

PORTB requires the binary data:

www.newnespress.com

161C Programming Language

00000000
00000001
00000010
00000011
.
.
11111110
11111111
00000000
.

Solution 3.4

A for loop can be used to create an endless loop, and inside this loop the value of a

variable can be incremented and then sent to PORTB:

void main()
{

unsigned char Cnt ¼ 0;
for(;;) // Endless loop
{

PORTB ¼ Cnt; // Send Cnt to PORTB
Cntþþ; // Increment Cnt

}
}

Example 3.5

Write a program to set all bits of PORTB to logic 1 and then to logic 0, and to repeat

this process ten times.

Solution 3.5

A for statement can be used to create a loop to repeat the required operation ten times:

void main()
{

unsigned char j;
for(j ¼ 0; j < 10; jþþ) // Repeat 10 times
{
PORTB ¼ 0xFF; // Set PORTB pins to 1

PORTB ¼ 0; // Clear PORTB pins
}

}

www.newnespress.com

162 Chapter 3

Example 3.6

The radius and height of a cylinder are 2.5cm and 10cm respectively. Write a program

to calculate the volume of this cylinder.

Solution 3.6

The required program is:

void main()
{

float Radius ¼ 2.5, Height ¼ 10;
float Volume;
Volume ¼ PI *Radius*Radius*Height;

}

Example 3.7

Write a program to find the largest element of an integer array having ten elements.

Solution 3.7

At the beginning, variable m is set to the first element of the array. A loop is then

formed and the largest element of the array is found:

void main()
{

unsigned char j;
int m, A[10];
m ¼ A[0]; // First element of array
for(j ¼ 1; j < 10; jþþ)
{

if(A[j]> m)m ¼ A[j];
}

}

Example 3.8

Write a program using a while statement to clear all ten elements of an integer

array M.

www.newnespress.com

163C Programming Language

Solution 3.8

As shown in the program that follows, NUM is defined as 10 and variable j is used as

the loop counter:

#define NUM 10
void main()
{

int M[NUM];
unsigned char j ¼ 0;
while (j < NUM)
{

M[j] ¼ 0;
jþþ;

}
}

Example 3.9

Write a program to convert the temperature from �C to �F starting from 0�C, in steps of

1�C up to and including 100�C, and store the results in an array called F.

Solution 3.9

Given the temperature in �C, the equivalent in �F is calculated using the formula:

F ¼ C� 32:0ð Þ=1:8

A for loop is used to calculate the temperature in �F and store in array F:

void main()
{

float F[100];
unsigned char C;
for(C ¼ 0; C <¼ 100; Cþþ)
{

F[C] ¼ (C – 32.0) / 1.8;
}

}

www.newnespress.com

164 Chapter 3

3.4 Summary

There are many assembly and high-level languages for the PIC18 series of

microcontrollers. This book focuses on the mikroC compiler, since it is easy to learn

and a free demo version is available that allows users to develop programs as large as

2K in size.

This chapter presented an introduction to the mikroC language. A C program may

contain a number of functions and variables plus a main program. The beginning of the

main program is indicated by the statement void main().

A variable stores a value used during the computation. All variables in C must be declared

before they are used. A variable can be an 8-bit character, a 16-bit integer, a 32-bit long,

or a floating point number. Constants are stored in the flash program memory of PIC

microcontrollers, so using them avoids using valuable and limited RAM memory.

Various flow control and iteration statements such as if, switch, while, do, break, and so

on have been described in the chapter, with examples.

Pointers are used to store the addresses of variables. As we shall see in the next chapter,

pointers can be used to pass information back and forth between a function and its

calling point. For example, pointers can be used to pass variables between a main

program and a function.

3.5 Exercises

1. Write a C program to set bits 0 and 7 of PORTC to logic 1.

2. Write a C program to count down continuously and send the count to PORTB.

3. Write a C program to multiply each element of a ten element array by 2.

4. Write a C program to add two matrices P and Q. Assume that the dimension of

each matrix is 3 � 3 and store the result in another matrix called W.

5. Repeat Exercise 4 but this time multiply matrices P and Q and store the product in

matrix R.

6. What do the terms variable and constant mean?

7. What does program repetition mean? Describe the operation of while, do-while,

and for loops in C.

www.newnespress.com

165C Programming Language

8. What is an array? Write example statements to define the following arrays:

a) An array of ten integers

b) An array of thirty floats

c) A two-dimensional array having six rows and ten columns

9. Trace the operation of the following loops. What will be the value of variable z at

the end of each loop?

a) unsigned char j ¼ 0, z ¼ 0;
while(j < 10)

{
zþþ;

jþþ;
}

b) unsigned char z ¼ 10;
for(j ¼ 0; j < 10; jþþ)z��;

10. Given the following variable definitions, list the outcome of the following

conditional tests in terms of “true” or “false”:

unsigned int a ¼ 10, b ¼ 2;
if(a > 10)
if(b >¼ 2)
if(a ¼¼ 10)
if(a > 0)

11. Write a program to calculate whether a number is odd or even.

12. Determine the value of the following bitwise operations using AND, OR, and

EXOR operations:

Operand 1: 00010001
Operand 2: 11110001

13. How many times does each of the following loops iterate, and what is the final

value of the variable j in each case?

a) for(j ¼ 0; j < 5; jþþ)
b) for(j ¼ 1; j < 10; jþþ)
c) for(j ¼ 0; j <¼ 10; jþþ)
d) for(j ¼ 0; j <¼ 10; j þ¼ 2)
e) for(j ¼ 10; j > 0; j �¼ 2)

www.newnespress.com

166 Chapter 3

14. Write a program to calculate the sum of all positive integer numbers from 1 to 100.

15. Write a program to evaluate factorial n, where 0! and 1! evaluate to 1 and

n! ¼ n � (n – 1)!

16. Write a program to calculate the average value of the numbers stored in an array.

Assume that the array is called M and has twenty elements.

17. Modify the program in Exercise 16 to find the smallest and largest values of the

array. Store the smallest value in a variable called Sml and the largest value in a

variable called Lrg.

18. Derive equivalent if-else statements for the following tests:

a) (a > b) ? 0 : 1
b) (x < y) ? (a > b) : (c > d)

19. Given that f1 and f2 are both floating point variables, explain why the following

test expression controlling the while loop may not be safe:

do
{

.

.
} while(f1 !¼ f2);

Why would the problem not occur if both f1 and f2 were integers? How would you

correct this while loop?

20. What can you say about the following while loop?

k ¼ 0;
Total ¼ 0;
while (k < 10)
{

Sumþþ;
Total þ¼ Sum;

}

21. What can you say about the following for loop?

Cnt ¼ 0;
for(;;)
{

Cntþþ;
}

www.newnespress.com

167C Programming Language

This page intentionally left blank

CHAP T E R 4

Functions and Libraries in mikroC

4.1 mikroC Functions

A function is a self-contained section of code written to perform a specifically defined

action. Functions are usually created when a single operation must be performed in

different parts of the main program. It is, moreover, good programming practice to

divide a large program into a number of smaller, independent functions. The statements

within a function are executed by calling (or invoking) the function.

The general syntax of a function definition is shown in Figure 4.1. The data type

indicates the type of data returned by the function. This is followed by the name of the

function and then a set of parentheses, within which the arguments, separated by

commas, are declared. The body of the function, which includes the function’s

operational code, is written inside a set of curly brackets.

In the sample function definition that follows, the function, named Mult, receives two

integer arguments, a and b, and returns their product. Note that using parentheses in a

return statement is optional:

int Mult(int a, int b)
{

return (a*b);
}

When a function is called, it generally expects to be given the number of arguments

expressed in the function’s argument list. For example, the preceding function can be

called as:

z ¼ Mult(x, y);

www.newnespress.com

where variable z has the data type int. Note that the arguments declared in the

function definition and the arguments passed when the function is called are

independent of each other, even if they have the same name. In the preceding example,

when the function is called, variable x is copied to a and variable y is copied to b on

entry into function Mult.

Some functions do not return any data. The data type of such functions must be declared

as void. For example:

void LED(unsigned char D)
{

PORTB ¼ D;
}

void functions can be called without any assignment statements, but the parentheses are

needed to tell the compiler that a function call is made:

LED();

Also, some functions do not have any arguments. In the following example, the

function, named Compl, complements PORTC of the microcontroller. It returns no data

and has no arguments:

void Compl()
{

PORTC ¼ �PORTC;
}

This function can be called as:

Compl();

Functions are normally defined before the start of the main program.

Some function definitions and their use in main programs are illustrated in the

following examples:

type name (parameter1, parameter2,…..)
{

………….
function body
………….

}

Figure 4.1: General syntax of a function definition

www.newnespress.com

170 Chapter 4

Example 4.1

Write a function called Circle_Area to calculate the area of a circle where the radius is

to be used as an argument. Use this function in a main program to calculate the area of a

circle whose radius is 2.5cm. Store the area in a variable called Circ.

Solution 4.1

The data type of the function is declared as float. The area of a circle is calculated

by the formula:

Area ¼ pr2

where r is the radius of the circle. The area is calculated and stored in a local

variable called s, which is then returned from the function:

float Circle_Area(float radius)

{
float s;

s ¼ PI * radius * radius;
return s;

}

Figure 4.2 shows how the function Circle_Area can be used in a main program to

calculate the area of a circle whose radius is 2.5cm. The function is defined before

the main program. Inside the main program the function is called to calculate and

store the area in variable Circ.

Example 4.2

Write a function called Area and a function called Volume to calculate the area and

volume of a cylinder respectively. Then write a main program to calculate the area

and the volume of cylinder whose radius is 2.0cm and height is 5.0cm. Store the area

in variable cyl_area and the volume in variable cyl_volume.

Solution 4.2

The area of a cylinder is calculated by the formula:

Area ¼ 2prh

www.newnespress.com

171Functions and Libraries in mikroC

where r and h are the radius and height of the cylinder. The volume of a cylinder is

calculated by the formula:

Volume ¼ pr2h

Figure 4.3 shows the functions that calculate the area and volume of a cylinder.

The main program that calculates the area and volume of a cylinder whose radius =

2.0cm and height = 5.0cm is shown in Figure 4.4.

Example 4.3

Write a function called LowerToUpper to convert a lowercase character to uppercase.

/∗∗

AREA OF A CIRCLE
================

This program calls to function Circle_Area to calculate the area of a circle.

Programmer: Dogan Ibrahim
File: CIRCLE.C
Date: May, 2007

∗∗

/∗ This function calculates the area of a circle given the radius ∗/
float Circle_Area(float radius)
{

float s;

s = PI ∗ radius ∗ radius;
return s;

}

/∗ Start of main program. Calculate the area of a circle where radius = 2.5 ∗/
void main()
{

float r, Circ;

r = 2.5;

Circ = Circle_Area(r);

}

Figure 4.2: Program to calculate the area of a circle

www.newnespress.com

172 Chapter 4

Solution 4.3

The ASCII value of the first uppercase character (‘A’) is 0�41. Similarly, the ASCII

value of the first lowercase character (‘a’) is 0�61. An uppercase character can be

converted to its equivalent lowercase by subtracting 0�20 from the character. The

required function listing is shown in Figure 4.5.

Example 4.4

Use the function you created in Example 4.3 in a main program to convert letter ‘r’ to

uppercase.

Solution 4.4

The required program is shown in Figure 4.6. Function LowerToUpper is called to

convert the lowercase character in variable Lc to uppercase and store in Uc.

4.1.1 Function Prototypes

If a function is not defined before it is called, the compiler will generate an error

message. One way around this problem is to create a function prototype. A function

prototype is easily constructed by making a copy of the function’s header and

appending a semicolon to it. If the function has parameters, giving names to these

float Area(float radius, float height)
{

float s;

s = 2.0∗PI ∗ radius∗height;
return s;

}

float Volume(float radius, float height)
{

float s;

s = PI ∗radius∗radius∗height;
return s;

}

Figure 4.3: Functions to calculate cylinder area and volume

www.newnespress.com

173Functions and Libraries in mikroC

parameters is not compulsory, but the data type of the parameters must be defined. An

example follows in which a function prototype called Area is declared and the function

is expected to have a floating point type parameter:

float Area(float radius);

/∗∗∗

AREA AND VOLUME OF A CYLINDER
===============================

This program calculates the area and volume of a cylinder whose radius is 2.0cm
and height is 5.0cm.

Programmer: Dogan Ibrahim
File: CYLINDER.C
Date: May, 2007
∗∗/

/∗ Function to calculate the area of a cylinder ∗/
float Area(float radius, float height)
{

float s;

s = 2.0∗PI ∗ radius*height;
return s;

}

/∗ Function to calculate the volume of a cylinder ∗/
float Volume(float radius, float height)
{

float s;

s = PI ∗radius∗radius∗height;
return s;

}

/∗ Start of the main program ∗/
void main()
{

float r = 2.0, h = 5.0;
float cyl_area, cyl_volume;

cyl_area = Area(r, h);
cyl_volume(r, h);

}

Figure 4.4: Program that calculates the area and volume of a cylinder

www.newnespress.com

174 Chapter 4

This function prototype could also be declared as:

float Area(float);

Function prototypes should be declared at the beginning of a program. Function

definitions and function calls can then be made at any point in the program.

/∗∗

LOWERCASE TO UPPERCASE
==========================

This program converts the lowercase character in variable Lc to uppercase
and stores in variable Uc.

Programmer: Dogan Ibrahim
File: LTOUPPER.C
Date: May, 2007
∗∗∗/

/∗ Function to convert a lower case character to upper case ∗/
unsigned char LowerToUpper(unsigned char c)
{

if(c >= ‘a’ && c <= ‘z’)
return (c – 0x20);

else
 return c;
}

/∗ Start of main program ∗/
void main()
{

unsigned char Lc, Uc;

Lc = ‘r’;
Uc = LowerToUpper(Lc);

}

Figure 4.6: Program calling function LowerToUpper

unsigned char LowerToUpper(unsigned char c)
{

if(c >= ‘a’ && c <= ‘z’)
return (c – 0x20);

else
return c;

}

Figure 4.5: Function to convert lowercase to uppercase

www.newnespress.com

175Functions and Libraries in mikroC

Example 4.5

Repeat Example 4.4 but declare LowerToUpper as a function prototype.

Solution 4.5

Figure 4.7 shows the program where function LowerToUpper is declared as a function

prototype at the beginning of the program. In this example, the actual function

definition is written after the main program.

One important advantage of using function prototypes is that if the function prototype

does not match the actual function definition, mikroC will detect this and modify the

/∗∗

LOWERCASE TO UPPERCASE
=========================

This program converts the lowercase character in variable Lc to uppercase
and stores in variable Uc.

Programmer: Dogan Ibrahim
File: LTOUPPER2.C
Date: May, 2007
∗∗/

unsigned char LowerToUpper(unsigned char);

/∗ Start of main program ∗/
void main()
{

unsigned char Lc, Uc;

Lc = ‘r’;
Uc = LowerToUpper(Lc);

}

/∗ Function to convert a lower case character to upper case ∗/
unsigned char LowerToUpper(unsigned char c)
{

if(c >= ‘a’ && c <= ‘z’)
return (c – 0x20);

else
return c;

}

Figure 4.7: Program using function prototype

www.newnespress.com

176 Chapter 4

data types in the function call to match the data types declared in the function prototype.

Suppose we have the following code:

unsigned char c ¼ ‘A’;
unsigned int x ¼ 100;
long Tmp;
long MyFunc(long a, long b); // function prototype

void main()

{
.
.
Tmp ¼ MyFunc(c, x);
.
.

}

In this example, because the function prototype declares the two arguments as long,

variables c and x are converted to long before they are used inside function MyFunc.

4.1.2 Passing Arrays to Functions

There are many applications where we may want to pass arrays to functions. Passing a

single array element is straightforward, as we simply specify the index of the array

element to be passed, as in the following function call which passes the second element

(index ¼ 1) of array A to function Calc. It is important to realize that an individual array

element is passed by value (i.e., a copy of the array element is passed to the function):

x ¼ Calc(A [1]);

In some applications we may want to pass complete arrays to functions. An array name

can be used as an argument to a function, thus permitting the entire array to be passed.

To pass a complete array to a function, the array name must appear by itself within the

brackets. The size of the array is not specified within the formal argument declaration.

In the function header the array name must be specified with a pair of empty brackets.

It is important to realize that when a complete array is passed to a function, what is

actually passed is not a copy of the array but the address of the first element of the array

(i.e., the array elements are passed by reference, which means that the original array

elements can be modified inside the function).

Some examples follow that illustrate the passing of a complete array to a function.

www.newnespress.com

177Functions and Libraries in mikroC

Example 4.6

Write a program to store the numbers 1 to 10 in an array called Numbers. Then call a

function named Average to calculate the average of these numbers.

Solution 4.6

The required program listing is shown in Figure 4.8. Function Average receives the

elements of array Numbers and calculates the average of the array elements.

/∗∗

PASSING AN ARRAY TO A FUNCTION
===============================

This program stores numbers 1 to 10 in an array called Numbers. Function
Average is then called to calculate the average of these numbers.

Programmer: Dogan Ibrahim
File: AVERAGE.C
Date: May, 2007
∗∗∗/

/∗ Function to calculate the average ∗/
float Average(int A[])
{

float Sum = 0.0, k;
unsigned char j;

for(j=0; j<10; j++)
{

Sum = Sum + A[j];
}
k = Sum / 10.0;
return k;

}

/∗ Start of the main program ∗/
void main()
{

unsigned char j;
float Avrg;
int Numbers[10];

for(j=0; j<10; j++)Numbers[j] = j+1;
Avrg = Average(Numbers);

}

Figure 4.8: Program passing an array to a function

www.newnespress.com

178 Chapter 4

Example 4.7

Repeat Example 4.6, but this time define the array size at the beginning of the program

and then pass the array size to the function.

Solution 4.7

The required program listing is shown in Figure 4.9.

/∗∗∗

PASSING AN ARRAY TO A FUNCTION
===============================

This program stores numbers 1 to N in an array called Numbers where N is
defined at the beginning of the program. Function Average is then called to
calculate the average of these numbers.

Programmer: Dogan Ibrahim
File: AVERAGE2.C
Date: May, 2007
∗∗∗/

#define Array_Size 20

/∗ Function to calculate the average ∗/
float Average(int A[], int N)
{

float Sum = 0.0, k;
unsigned char j;

for(j=0; j<N; j++)
{

Sum = Sum + A[j];
}
k = Sum / N;
return k;

}

/∗ Start of the main program ∗/
void main()
{

unsigned char j;
float Avrg;
int Numbers[Array_Size];

for(j=0; j<Array_Size; j++)Numbers[j] = j+1;
Avrg = Average(Numbers, Array_Size);

}

Figure 4.9: Another program passing an array to a function

www.newnespress.com

179Functions and Libraries in mikroC

It is also possible to pass a complete array to a function using pointers. The address of

the first element of the array is passed to the function, and the function can then

manipulate the array as required using pointer operations. An example follows.

Example 4.8

Repeat Example 4.6, but this time use a pointer to pass the array elements to the

function.

Solution 4.8

The required program listing is given in Figure 4.10. An integer pointer is used to pass

the array elements to the function, and the function elements are manipulated using

pointer operations. Notice that the address of the first element of the array is passed as

an integer with the statement: &Numbers[0].

4.1.3 Passing Variables by Reference to Functions

By default, arguments to functions are passed by value. Although this method has many

distinct advantages, there are occasions when it is more appropriate and also more

efficient to pass the address of the arguments instead, that is, to pass the argument by

reference. When the address of an argument is passed, the original value of that

argument can be modified by the function; thus the function does not have to return any

variables. An example follows which illustrates how the address of arguments can be

passed to a function and how the values of these arguments can be modified inside the

function.

Example 4.9

Write a function named Swap to accept two integer arguments and then to swap the

values of these arguments. Use this function in a main program to swap the values of

two variables.

Solution 4.9

The required program listing is shown in Figure 4.11. Function Swap is defined as void

since it does not return any value. It has two arguments, a and b, and in the function

header two integer pointers are used to pass the addresses of these variables. Inside the

function body, the value of an argument is accessed by inserting the “*” character in

www.newnespress.com

180 Chapter 4

front of the argument. Inside the main program, the addresses of the variables are

passed to the function using the “&” character in front of the variable names. At the end

of the program, variables p and q are set to 20 and 10 respectively.

4.1.4 Variable Number of Arguments

The ellipsis character (“.. .”) consists of three successive periods with no spaces

between them. An ellipsis can be used in the argument lists of function prototypes to

/∗∗

This program stores numbers 1 to 10 in an array called Numbers. Function
Average is then called to calculate the average of these numbers.

Programmer: Dogan Ibrahim
File: AVERAGE3.C
Date: May, 2007
∗∗∗/

/∗ Function to calculate the average ∗/
float Average(int ∗A)
{

float Sum = 0.0, k;
unsigned char j;

for(j=0; j<10; j++)
{

Sum = Sum + ∗(A + j);
}
k = Sum / 10.0;
return k;

}

/∗ Start of the main program ∗/
void main()
{

unsigned char j;
float Avrg;
int Numbers[10];

for(j=0; j<10; j++)Numbers[j] = j+1;
Avrg = Average(&Numbers[0]);

}

PASSING AN ARRAY TO A FUNCTION
===============================

Figure 4.10: Program passing an array using pointers

www.newnespress.com

181Functions and Libraries in mikroC

indicate a variable number of arguments or arguments with varying types. An example

of a declaration of a function prototype with ellipsis follows. In this declaration, when

the function is called we must supply at least two integer type arguments, and we can

also supply any number of additional arguments:

unsigned char MyFunc(int a, int b,. . .);

The header file stdarg.h must be included at the beginning of a program that uses a

variable number of arguments. This header file defines a new data type called va_list,

which is essentially a character pointer. In addition, macro va_start() initializes an

object of type va_list to point to the address of the first additional argument presented to

the function. To extract the arguments, successive calls to the macro va_arg() must be

/***

PASSING VARIABLES BY REFERENCE
===============================

This program shows how the address of variables can be passed to functions.
The function in this program swaps the values of two integer variables.

Programmer: Dogan Ibrahim
File: SWAP.C
Date: May, 2007
***/

/* Function to swap two integers */
void Swap(int *a, int *b)
{

int temp;

temp = *a; // Store a in temp
*a = *b; // Copy b to a
*b = temp; // Copy temp to b

}

/* Start of the main program */
void main()
{

int p, q;

p = 10; // Set p = 10
q = 20; // Set q = 20
swap(&p, &q); // Swap p and q (p=20, q=10)

}

Figure 4.11: Passing variables by reference to a function

www.newnespress.com

182 Chapter 4

made, with the character pointer and the type of the parameter as the arguments of

va_arg().

An example program is given in Figure 4.12. In this program the function header

declares only one parameter of type int, and an ellipsis is used to declare a variable

/∗∗∗

PASSING VARIABLE NUMBER OF ARGUMENTS
=======================================

This program shows how variable number of arguments can be passed to a
function. The function header declares one integer variable and an ellipsis is
used to declare variable number of parameters. The function adds all the
arguments and returns the sum as an integer. The number of arguments is
supplied by the calling program as the first argument to the function.

∗∗∗/

#include <stdarg.h>

/∗ Function with variable number of parameters ∗/
int Sum(int num,…)
{

unsigned char j;
va_list ap;
int temp = 0;

va_start(ap, num);

for(j = 0; j < num; j++)
 {

temp = temp + va_arg(ap, int);
 }

va_end(ap);
return temp;

}

/∗ Start of the main program ∗/
void main()
{

int p;

p = Sum(2, 3, 5); // 2 arguments. p=3+5=8
p = Sum(3, 2, 5, 6); // 3 arguments, p=2+5+6=13

}

Programmer: Dogan Ibrahim
File: VARIABLE.C
Date: May, 2007

Figure 4.12: Passing variable number of arguments to a function

www.newnespress.com

183Functions and Libraries in mikroC

number of parameters. Variable num is the argument count passed by the calling

program. The arguments are read by using the macro va_arg(ap, int) and then summed

using variable temp and returned by the function.

4.1.5 Function Reentrancy

The mikroC compiler supports only a limited function reentrancy. Functions that have

no arguments and local variables can be called both from the interrupt service routines

and from the main program. Functions that have arguments and/or local variables can

only be called from the interrupt service routines or from the main program.

4.1.6 Static Function Variables

Normally, variables declared at the beginning of a program, before the main program,

are global, and their values can be accessed and modified by all parts of the program.

Declaring a variable used in a function as global ensures that its value is retained from

one call of the function to another, but this also undermines the variable’s privacy and

reduces the portability of the function to other applications. A better approach is to

declare such variables as static. Static variables are mainly used in function definitions.

When a variable is declared as static, its value is retained from one call of the function

to another. In the example code that follows, variable k is declared as static and

initialized to zero. This variable is then incremented before exiting from the function,

and the value of k remains in existence and holds its last value on the next call to the

function (i.e., on the second call to the function the value of k will be 1):

void Cnt(void)
{

static int k ¼ 0; // Declare k as static
.
.
kþþ; // increment k

}

4.2 mikroC Built-in Functions

The mikroC compiler provides a set of built-in functions which can be called from the

program. These functions are listed in Table 4.1, along with a brief description of each.

Most of these functions can be used in a program without having to include header files.

www.newnespress.com

184 Chapter 4

The exceptions are functions Lo, Hi, Higher, and Highest, which require the header file

built_in.h. Further details about using these functions are available in the mikroC

manuals.

Functions Delay_us and Delay_ms are frequently used in programs where delays are

required (e.g., when flashing an LED). The following example illustrates the use of the

Delay_ms function:

Example 4.10

An LED is connected to bit 0 of PORTB (pin RB0) of a PIC18FXXX microcontroller

through a current-limiting resistor as shown in Figure 4.13. Choose a suitable value for

the resistor and write a program that will flash the LED ON and OFF continuously at

one-second intervals.

Solution 4.10

LEDs can be connected to a microcontroller in two modes: current sinking and current

sourcing. In current sinking mode (see Figure 4.14) one leg of the LED is connected to

the +5V and the other leg is connected to the microcontroller output port pin through a

current limiting resistor R.

Table 4.1: mikroC built-in functions

Function Description

Lo Returns the lowest byte of a number (bits 0 to 7)

Hi Returns next to the lowest byte of a number (bits 8 to 15)

Higher Returns next to the highest byte of a number (bits 16 to 23)

Highest Returns the highest byte of a number (bits 24 to 31)

Delay_us Creates software delay in microsecond units

Delay_ms Creates constant software delay in millisecond units

Vdelay_ms Creates delay in milliseconds using program variables

Delay_Cyc Creates delay based on microcontroller clock

Clock_Khz Returns microcontroller clock in KHz

Clock_Mhz Returns microcontroller clock in MHz

www.newnespress.com

185Functions and Libraries in mikroC

Under normal working conditions, the voltage across an LED is about 2V and the

current through the LED is about 10mA (some low-power LEDs can operate at as low

as 1mA current). The maximum current that can be sourced or sinked at the output port

of a PIC microcontroller is 25mA.

The value of the current limiting resistor R can be calculated as follows. In current

sinking mode the LED will be turned ON when the output port of the microcontroller is

at logic 0 (i.e., at approximately 0V). The required resistor is then:

R ¼ 5V � 2V

10mA
¼ 0:3K

The nearest resistor to choose is 290 Ohm (a slightly higher resistor can be chosen for a

lower current and slightly less brightness).

Figure 4.13: LED connected to port RB0 of a PIC microcontroller

www.newnespress.com

186 Chapter 4

In current sourcing mode (see Figure 4.15) one leg of the LED is connected to the

output port of the microcontroller and the other leg is connected to the ground through a

current limiting resistor. The LED will be turned ON when the output port of the

microcontroller is at logic 1 (i.e., at approximately 5V). The same value of resistor can

be used in both current sinking and current sourcing modes.

The required program listing is given in Figure 4.16 (program FLASH.C). At

the beginning of the program PORTB is configured as output using the TRISB ¼ 0

statement. An endless loop is then formed with the for statement, and inside this

loop the LED is turned ON and OFF with one-second delays between outputs.

The program given in Figure 4.16 can be made more user-friendly and easier to follow

by using define statements as shown in Figure 4.17 (program FLASH2.C).

Figure 4.14: Connecting the LED in current sinking mode

Figure 4.15: Connecting the LED in current sourcing mode

www.newnespress.com

187Functions and Libraries in mikroC

4.3 mikroC Library Functions

A large set of library functions is available with the mikroC compiler. These library

functions can be called from anywhere in a program, and they do not require that header

files are included in the program. The mikroC user manual gives a detailed description

of each library function, with examples. In this section, the available library functions

are identified, and the important and commonly used library functions are described in

detail, with examples.

Table 4.2 gives a list of the mikroC library functions, organized in functional order.

Some of the frequently used library functions are:

� EEPROM library

� LCD library

� Software UART library

� Hardware USART library

/∗∗∗

FLASHING AN LED
===============

This program flashes an LED connected to port RB0 of a microcontroller
with one second intervals. mikroC built-in function Delay_ms is used to
create a 1 second delay between the flashes.

Programmer: Dogan Ibrahim
File: FLASH.C
Date: May, 2007
∗∗∗/

void main()
{

TRISB = 0; // Configure PORTB as output
for(; ;) // Endless loop
{

PORTB = 1; // Turn ON LED
Delay_ms(1000); // 1 second delay
PORTB = 0; // Turn OFF LED
Delay_ms(1000); // 1 second delay

}
}

Figure 4.16: Program to flash an LED

www.newnespress.com

188 Chapter 4

� Sound library

� ANSI C library

� Miscellaneous library

4.3.1 EEPROM Library

The EEPROM library includes functions to read data from the on-chip PIC

microcontroller nonvolatile EEPROM memory, or to write data to this memory. Two

functions are provided:

� Eeprom_Read

� Eeprom_Write

/∗∗∗

FLASHING AN LED
===============

This program flashes an LED connected to port RB0 of a microcontroller
with one second intervals. mikroC built-in function Delay_ms is used to
create a 1 second delay between the flashes.

Programmer: Dogan Ibrahim
File: FLASH2.C
Date: May, 2007
∗∗/

#define LED PORTB.0
#define ON 1
#define OFF 0
#define One_Second_Delay Delay_ms(1000)

void main()
{

TRISB = 0;

for(; ;)
{

LED = ON;
One_Second_Delay;
LED = OFF;
One_Second_Delay;

}
}

// 1 second delay
// Turn OFF LED
// 1 second delay
// Turn ON LED

// Endless loop

// Configure PORTB as output

Figure 4.17: Another program to flash an LED

www.newnespress.com

189Functions and Libraries in mikroC

Table 4.2: mikroC library functions

Library Description

ADC Analog-to-digital conversion functions

CAN CAN bus functions

CANSPI SPI-based CAN bus functions

Compact Flash Compact flash memory functions

EEPROM EEPROM memory read/write functions

Ethernet Ethernet functions

SPI Ethernet SPI-based Ethernet functions

Flash Memory Flash memory functions

Graphics LCD Standard graphics LCD functions

T6963C Graphics LCD T6963-based graphics LCD functions

I2C I2C bus functions

Keypad Keypad functions

LCD Standard LCD functions

Manchester Code Manchester code functions

Multi Media Multimedia functions

One Wire One wire functions

PS/2 PS/2 functions

PWM PWM functions

RS-485 RS-485 communication functions

Sound Sound functions

SPI SPI bus functions

USART USART serial communication functions

Util Utilities functions

SPI Graphics LCD SPI-based graphics LCD functions

Port Expander Port expander functions

(Continued)

www.newnespress.com

190 Chapter 4

The Eeprom_Read function reads a byte from a specified address of the EEPROM. The

address is of type integer, and thus the function supports PIC microcontrollers with

more than 256 bytes. A 20ms delay should be used between successive reads from the

EEPROM to guarantee the return of correct data. In the following example, the byte at

address 0x1F of the EEPROM is read and stored in variable Temp:

Temp ¼ Eeprom_Read(0x1F);

The Eeprom_Write function writes a byte to a specified address of the EEPROM.

The address is of type integer and thus the function supports PIC microcontrollers

with more than 256 bytes. A 20ms delay should be used between successive

reads or writes to the EEPROM to guarantee the correct transfer of data to the EEPROM.

In the following example, number 0x05 is written to address 0x2F of the EEPROM:

Eeprom_Write(0x2F, 0x05);

Example 4.11

Write a program to read the contents of EEPROM from address 0 to 0x2F and then send

this data to PORTB of a PIC microcontroller.

Solution 4.11

The required program is given in Figure 4.18. A for loop is used to read data from the

EEPROM and then send it to PORT B of the microcontroller. Notice that a 20ms delay

is used between each successive read.

Table 4.2: mikroC library functions (cont’d)

Library Description

SPI LCD SPI-based LCD functions

ANSI C Ctype C Ctype functions

ANSI C Math C Math functions

ANSI C Stdlib C Stdlib functions

ANSI C String C String functions

Conversion Conversion functions

Trigonometry Trigonometry functions

Time Time functions

www.newnespress.com

191Functions and Libraries in mikroC

4.3.2 LCD Library

One thing all microcontrollers lack is some kind of video display. A video display

would make a microcontroller much more user-friendly, enabling text messages,

graphics, and numeric values to be output in a more versatile manner than with

7-segment displays, LEDs, or alphanumeric displays. Standard video displays require

complex interfaces and their cost is relatively high. LCDs are alphanumeric (or graphic)

displays which are frequently used in microcontroller-based applications. These display

devices come in different shapes and sizes. Some LCDs have forty or more character

lengths with the capability to display several lines. Others can be programmed to

display graphic images. Some modules offer color displays, while others incorporate

backlighting so they can be viewed in dimly lit conditions.

There are basically two types of LCDs as far as the interfacing technique is concerned:

parallel and serial. Parallel LCDs (e.g., the Hitachi HD44780 series) are connected to

the microcontroller circuitry such that data is transferred to the LCD using more than

one line, usually four or eight data lines. Serial LCDs are connected to a microcontroller

/∗∗∗

READING FROM THE EEPROM
 =========================

This program reads data from addresses 0 to 0x2F of the EEPROM and then
sends this data to PORTB of the microcontroller.

Programmer:
File:
Date:
∗∗/

void main()
{

unsigned int j;
unsigned char Temp;

for(j=0; j <= 0x2F; j++)
{

}
}

Dogan Ibrahim
EEPROM.C
May, 2007

TRISB = 0; // Configure PORTB as output

Temp = Eeprom_Read(j);
PORTB = Temp;
Delay_ms(20);

Figure 4.18: Program to read from the EEPROM

www.newnespress.com

192 Chapter 4

using one data line only, and data is transferred using the RS232 asynchronous data

communications protocol. Serial LCDs are generally much easier to work with but more

costly than parallel ones. In this book only parallel LCDs are discussed, as they are used

more often in microcontroller-based projects.

Low-level programming of a parallel LCD is usually a complex task and requires

a good understanding of the internal operation of the LCD, including the timing

diagrams. Fortunately, mikroC language provides functions for both text-based

and graphic LCDs, simplifying the use of LCDs in PIC-microcontroller-based projects.

The HD44780 controller is a common choice in LCD-based microcontroller

applications. A brief description of this controller and information on some

commercially available LCD modules follows.

The HD44780 LCD Controller

The HD44780 is one of the most popular LCD controllers, being used both in industrial

and commercial applications and also by hobbyists. The module is monochrome and

comes in different shapes and sizes. Modules with 8, 16, 20, 24, 32, and 40 characters

are available. Depending on the model, the display provides a 14-pin or 16-pin

connector for interfacing. Table 4.3 shows the pin configuration and pin functions of

a typical 14-pin LCD.

VSS is the 0V supply or ground. The VDD pin should be connected to the positive

supply. Although the manufacturers specify a 5V DC supply, the modules usually work

with as low as 3V or as high as 6V.

Pin 3 is named as VEE and is the contrast control pin. It is used to adjust the contrast of

the display and should be connected to a DC supply. A potentiometer is usually

connected to the power supply with its wiper arm connected to this pin and the other leg

of the potentiometer connected to the ground. This way the voltage at the VEE pin, and

hence the contrast of the display, can be adjusted as desired.

Pin 4 is the register select (RS) and when this pin is LOW, data transferred to the LCD

is treated as commands. When RS is HIGH, character data can be transferred to and

from the module.

Pin 5 is the read/write (R/W) pin. This pin is pulled LOW in order to write commands

or character data to the LCD module. When this pin is HIGH, character data or status

information can be read from the module.

www.newnespress.com

193Functions and Libraries in mikroC

Pin 6 is the enable (EN) pin, which is used to initiate the transfer of commands or data

between the module and the microcontroller. When writing to the display, data is

transferred only on the HIGH to LOW transition of this pin. When reading from the

display, data becomes available after the LOW to HIGH transition of the enable pin,

and this data remains valid as long as the enable pin is at logic HIGH.

Pins 7 to 14 are the eight data bus lines (D0 to D7). Data can be transferred between the

microcontroller and the LCD module using either a single 8-bit byte or two 4-bit

nibbles. In the latter case, only the upper four data lines (D4 to D7) are used. The 4-bit

mode has the advantage of requiring fewer I/O lines to communicate with the LCD.

The mikroC LCD library provides a large number of functions to control text-based

LCDs with 4-bit and 8-bit data interfaces, and for graphics LCDs. The most common

Table 4.3: Pin configuration of the
HD44780 LCD module

Pin no. Name Function

1 VSS Ground

2 VDD +ve supply

3 VEE Contrast

4 RS Register select

5 R/W Read/write

6 EN Enable

7 D0 Data bit 0

8 D1 Data bit 1

9 D2 Data bit 2

10 D3 Data bit 3

11 D4 Data bit 4

12 D5 Data bit 5

13 D6 Data bit 6

14 D7 Data bit 7

www.newnespress.com

194 Chapter 4

are the 4-bit-interface text-based LCDs. This section describes the available mikroC

functions for these LCDs. Further information on other text- or graphics-based LCD

functions are available in the mikroC manual.

The following are the LCD functions available for 4-bit-interface text-based

LCDs:

� Lcd_Config

� Lcd_Init

� Lcd_Out

� Lcd_Out_Cp

� Lcd_Chr

� Lcd_Chr_Cp

� Lcd_Cmd

Lcd_Config The Lcd_Config function is used to configure the LCD interface. The

default connection between the LCD and the microcontroller is:

LCD Microcontroller port pin

RS 2
EN 3
D4 4
D5 5
D6 6
D7 7

The R/W pin of the LCD is not used and should be connected to the ground.

This function should be used to change the default connection. It should be called with

the parameters in the following order:

port name, RS pin, EN pin, R/W pin, D7 pin, D6 pin, D5 pin, D4 pin

The port name should be specified by passing its address. For example, if the RS pin is

connected to RB0, EN pin to RB1, D7 pin to RB2, D6 pin to RB3, D5 pin to RB4, and

the D4 pin to RB5, then the function should be called as follows:

Lcd_Config(&PORTB, 0, 1, 2, 3, 4, 5);

www.newnespress.com

195Functions and Libraries in mikroC

Lcd_Init The Lcd_Init function is called to configure the interface between the

microcontroller and the LCD when the default connections are made as just illustrated.

The port name should be specified by passing its address. For example, assuming that

the LCD is connected to PORTB and the preceding default connections are used, the

function should be called as:

Lcd_Init(&PORTB);

Lcd_Out The Lcd_Out function displays text at the specified row and column position

of the LCD. The function should be called with the parameters in the following order:

row, column, text

For example, to display text “Computer” at row 1 and column 2 of the LCD we should

call the function as:

Lcd_Out(1, 2, “Computer”);

Lcd_Out_Cp The Lcd_Out_Cp function displays text at the current cursor position.

For example, to display text “Computer” at the current cursor position the function

should be called as:

Lcd_Out_Cp(“Computer”);

Lcd_Chr The Lcd_Chr function displays a character at the specified row and column

position of the cursor. The function should be called with the parameters in the

following order:

row, column, character

For example, to display character “K” at row 2 and column 4 of the LCD we should call

the function as:

LCD_Chr(2, 4, ‘K’);

Lcd_Chr_Cp The Lcd_Chr_Cp function displays a character at the current cursor

position. For example, to display character “M” at the current cursor position the

function should be called as:

Lcd_Chr_Cp(‘M’);

Lcd_Cmd The Lcd_Cmd function is used to send a command to the LCD. With the

commands we can move the cursor to any required row, clear the LCD, blink the cursor,

www.newnespress.com

196 Chapter 4

shift display, etc. A list of the most commonly used LCD commands is given in

Table 4.4. For example, to clear the LCD we should call the function as:

Lcd_Cmd(Lcd_Clear);

An example illustrates initialization and use of the LCD.

Example 4.12

A text-based LCD is connected to a PIC18F452 microcontroller in the default mode as

shown in Figure 4.19. Write a program to send the text “My Computer” to row 1,

column 4 of the LCD.

Solution 4.12

The required program listing is given in Figure 4.20 (program LCD.C). At the

beginning of the program PORTB is configured as output with the TRISB ¼ 0

Table 4.4: LCD commands

LCD command Description

LCD_CLEAR Clear display

LCD_RETURN_HOME Return cursor to home position

LCD_FIRST_ROW Move cursor to first row

LCD_SECOND_ROW Move cursor to second row

LCD_THIRD_ROW Move cursor to third row

LCD_FOURTH_ROW Move cursor to fourth row

LCD_BLINK_CURSOR_ON Blink cursor

LCD_TURN_ON Turn display on

LCD_TURN_OFF Turn display off

LCD_MOVE_CURSOR_LEFT Move cursor left

LCD_MOVE_CURSOR_RIGHT Move cursor right

LCD_SHIFT_LEFT Shift display left

LCD_SHIFT_RIGHT Shift display right

www.newnespress.com

197Functions and Libraries in mikroC

Figure 4.19: Connecting an LCD to a PIC microcontroller

/∗∗∗

 WRITING TEXT TO AN LCD
 =======================

A text based LCD is connected to a PIC microcontroller in the default mode.
This program displays the text “My Computer” on the LCD.

Programmer:
File:
Date:
∗∗∗/

void main()
{

TRISB = 0;

Lcd_Init(&PORTB);
Lcd_Cmd(LCD_CLEAR); // Clear the LCD

// Display text on LCD Lcd_Out(1, 4, “My Computer);
}

// Configure PORTB as output

// Initialize the LCD

Dogan Ibrahim
LCD.C
May, 2007

Figure 4.20: LCD program listing

www.newnespress.com

statement. The LCD is then initialized, the display is cleared, and the text message “My

Computer” is displayed on the LCD.

4.3.3 Software UART Library

Universal asynchronous receiver transmitter (UART) software library is used for RS232-

based serial communication between two electronic devices. In serial communication,

only two cables (plus a ground cable) are required to transfer data in either direction. Data

is sent in serial format over the cable bit by bit. Normally, the receiving device is in idle

mode with its transmit (TX) pin at logic 1, also known asMARK. Data transmission starts

when this pin goes to logic 0, also known as SPACE. The first bit sent is the start bit at logic

0. Following this bit, 7 or 8 data bits are sent, followed by an optional parity bit. The last bit

sent is the stop bit at logic 1. Serial data is usually sent as a 10-bit frame consisting of a start

bit, 8 data bits, and a stop bit, and no parity bits. Figure 4.21 shows how character “A” can

be sent using serial communication. Character “A” has the ASCII bit pattern 01000001.

As shown in the figure, first the start bit is sent, this is followed by 8 data bits 01000001,

and finally the stop bit is sent.

The bit timing is very important in serial communication, and the transmitting (TX) and

receiving (RX) devices must have the same bit timings. The bit timing is measured by

the baud rate, which specifies the number of bits transmitted or received each second.

Typical baud rates are 4800, 9600, 19200, 38400, and so on. For example, when

operating at 9600 baud rate with a frame size of 10 bits, 960 characters are transmitted

or received each second. The timing between bits is then about 104ms.

In RS232-based serial communication the two devices are connected to each other (see

Figure 4.22) using either a 25-way connector or a 9-way connector. Normally only the

TX, RX, and GND pins are required for communication. The required pins for both

types of connectors are given in Table 4.5.

The voltage levels specified by the RS232 protocol are �12V. A logic HIGH signal is

at �12V and a logic LOW signal is at þ12V. PIC microcontrollers, on the other hand,

START

IDLE 1

0 0 0 0 0 0

1

0

STOP

Figure 4.21: Sending character “A” in serial communication

www.newnespress.com

199Functions and Libraries in mikroC

normally operate at 0 to 5V voltage levels, the RS232 signals must be converted to 0 to

5V when input to a microcontroller. Similarly, the output of the microcontroller must be

converted to �12V before sending to the receiving RS232 device. The voltage

conversion is usually carried out with RS232 converter chips, such as the MAX232,

manufactured by Maxim Inc.

Serial communication may be implemented in hardware using a specific pin of a

microcontroller, or the required signals can be generated in software from any

required pin of a microcontroller. Hardware implementation requires either an

on-chip UART (or USART) circuit or an external UART chip that is connected to

the microcontroller. Software-based UART is more commonly used and does not

require any special circuits. Serial data is generated by delay loops in software-

based UART applications. In this section only the software-based UART functions

are described.

The mikroC compiler supports the following software UART functions:

� Soft_Uart_Init

� Soft_Uart_Read

� Soft_Uart_Write

Table 4.5: Pins required for serial communication

Pin 9-way connector 25-way connector

TX 2 2

RX 3 3

GND 5 7

Figure 4.22: 25-way and 9-way RS232 connectors

www.newnespress.com

200 Chapter 4

Soft_Uart_Init

The Soft_Uart_Init function specifies the serial communications parameters and does so

in the following order:

port, rx pin, tx pin, baud rate, mode

port is the port used as the software UART (e.g., PORTB), rx is the receive pin number,

tx is the transmit pin number, baud rate is the chosen baud rate where the maximum

value depends on the clock rate of the microcontroller, and mode specifies whether

or not the data should be inverted at the output of the port. A 0 indicates that it

should not be inverted, and a 1 indicates that it should be inverted. When an RS232

voltage level converter chip is used (e.g., MAX232) then the mode must be set to 0.

Soft_Uart_Init must be the first function called before software-based serial

communication is established.

The following example configures the software UART to use PORTB as the serial port,

with RB0 as the RX pin and RB1 as the TX pin. The baud rate is set to 9600 with the

mode noninverted:

Soft_Uart_Init(PORTB, 0, 1, 9600, 0);

Soft_Uart_Read

The Soft_Uart_Read function receives a byte from a specified serial port pin. The

function returns an error condition and the data is read from the serial port. The function

does not wait for data to be available at the port, and therefore the error parameter must

be tested if a byte is expected. The error is normally 1 and becomes 0 when a byte is

read from the port.

The following example illustrates reading a byte from the serial port configured

by calling the function Soft_Uart_Init. The received byte is stored in variable Temp:

do
Temp ¼ Soft_Uart_Read(&Rx_Error);

while (Rx_Error);

Soft_Uart_Write

The Soft_Uart_Write function transmits a byte to a configured serial port pin. The data

to be sent must be specified as a parameter in the call to the function.

www.newnespress.com

201Functions and Libraries in mikroC

For example, to send character “A” to the serial port pin:

char MyData ¼ ‘A’;
Soft_Uart_Write(MyData);

The following example illustrates the use of software UART functions.

Example 4.13

The serial port of a PC (e.g., COM1) is connected to a PIC18F452 microcontroller, and

terminal emulation software (e.g., HyperTerminal) is operated on the PC to use the

serial port. Pins RB0 and RB1 of the microcontroller are the RX and TX pins

respectively. The required baud rate is 9600.

Write a program to read data from the terminal, then increase this data by one and send

it back to the terminal. For example, if the user enters character “A,” then character “B”

should be displayed on the terminal. Assume that a MAX232-type voltage level

converter chip is converting the microcontroller signals to RS232 levels. Figure 4.23

shows the circuit diagram of this example.

Figure 4.23: Circuit diagram of Example 4.13

www.newnespress.com

202 Chapter 4

Solution 4.13

The MAX232 chip receives the TX signal from pin RB1 of the microcontroller and

converts it to RS232 levels. Comparably, the serial data received by the MAX232

chip is converted into microcontroller voltage levels and then sent to pin RB0. Note

that correct operation of the MAX232 chip requires four capacitors to be connected

to the chip.

The required program listing is shown in Figure 4.24 (program SERIAL.C). At the

beginning of the program, function Soft_Uart_Init is called to configure the serial port.

Then an endless loop is formed using a for statement. The Soft_Uart_Read function

is called to read a character from the terminal. After reading a character, the data

byte is incremented by one and then sent back to the terminal by calling function

Soft_Uart_Write.

/∗∗

READING AND WRITING TO SERIAL PORT
===================================

In this program PORTB pins RB0 and RB1 are configured as serial RX and
TX pins respectively. The baud rate is set to 9600. A character is received from a
serial terminal, incremented by one and then sent back to the terminal. Thus, if
character “A” is entered on the keyboard, character “B” will be displayed.

Programmer: Dogan Ibrahim
File: SERIAL.C
Date: May, 2007
∗∗/

void main()
{

unsigned char MyError, Temp;

Soft_Uart_Init(PORTB, 0, 1, 9600, 0);
for(; ;)
{

do
{

// Read a byte Temp = Soft_Uart_Read(&MyError);
} while(MyError);
Temp++;
Soft_Uart_Write(Temp); // Send the byte

// Increment byte

}

// Configure serial port
// Endless loop

Figure 4.24: Program listing of Example 4.13

www.newnespress.com

203Functions and Libraries in mikroC

4.3.4 Hardware USART Library

The universal synchronous asynchronous receiver transmitter (USART) hardware

library contains a number of functions to transmit and receive serial data using the

USART circuits built on the PIC microcontroller chips. Some PIC18F-series

microcontrollers have only one USART (e.g., PIC18F452), while others have two

USART circuits (e.g., PIC18F8520). Hardware USART has an advantage over

software-implemented USART, in that higher baud rates are generally available and

the microcontroller can perform other operations while data is sent to the USART.

The hardware USART library provides the following functions:

� Usart_Init

� Usart_Data_Ready

� Usart_Read

� Usart_Write

Usart_Init

The Usart_Init function initializes the hardware USART with the specified baud rate.

This function should be called first, before any other USART functions. The only

parameter required by this function is the baud rate. The following example call sets the

baud rate to 9600:

Usart_Init(9600);

Usart_Data_Ready

The Usart_Data_Ready function can be called to check whether or not a data byte has

been received by the USART. The function returns a 1 if data has been received and a

0 if no data has been received. The function has no parameters. The following code

checks if a data byte has been received or not:

if(Usart_Data_Ready())

Usart_Read

TheUsart_Read function is called to read a data byte from the USART. If data has not been

received, a 0 is returned. Note that reading data from the USART is nonblocking (i.e., the

www.newnespress.com

204 Chapter 4

function always returnswhether or not theUSARThas received a data byte). TheUsart_Read

function should be called after calling the functionUsart_Data_Ready to make sure that data

is available at theUSART.Usart_Read has no parameters. In the following example,USART

is checked and if a data byte has been received it is copied to variableMyData:

char MyData;
if(Usart_Data_Read()) MyData = Usart_Read();

Usart_Write

The Usart_Write function sends a data byte to the USART, and thus a serial data is sent

out of the USART. The data byte to be sent must be supplied as a parameter to the

function. In the following example, character “A” is sent to the USART:

char Temp = ‘A’;
Usart_Write(Temp);

The following example illustrates how the hardware USART functions can be used in a

program.

Example 4.14

The serial port of a PC (e.g., COM1) is connected to a PIC18F452 microcontroller, and

terminal emulation software (e.g., HyperTerminal) is operated on the PC to use the serial

port. The microcontroller’s hardware USART pins RC7 (USART receive pin, RX)

and RC6 (USART transmit pin, TX) are connected to the PC via a MAX232-type RS232

voltage level converter chip. The required baud rate is 9600. Write a program to read data

from the terminal, then increase this data by one and send it back to the terminal. For

example, if the user enters character “A,” then character “B” should be displayed on the

terminal. Figure 4.25 shows the circuit diagram of this example.

Solution 4.14

The required program listing is shown in Figure 4.26 (program SERIAL2.C). At the

beginning of the program, function Usart_Init is called to set the baud rate to 9600.

Then an endless loop is formed using a for statement. The Usart_Data_Ready function

is called to check whether a character is ready, and the character is read by calling

function Usart_Read. After reading a character, the data byte is incremented by one and

then sent back to the terminal by calling function Usart_Write.

In PIC microcontrollers that have more than one USART, the second USART is accessed

by appending a “2” to the end of the function (e.g., Usart_Write2, Usart_Read2, etc.).

www.newnespress.com

205Functions and Libraries in mikroC

4.3.5 Sound Library

Functions in the sound library make it possible to generate sounds in our applications.

A speaker (e.g., a piezo speaker) should be connected to the required microcontroller port.

The following functions are offered by the sound library:

� Sound_Init

� Sound_Play

Sound_Init

The Sound_Init function initializes the sound library and requires two parameters: the

name and the bit number of the port where the speaker is connected. The address of the

port name should be passed to the function. For example, if the speaker is connected to

bit 3 of PORTB, then the function should be called as:

Sount_Init(&PORTB, 3);

Figure 4.25: Circuit diagram of Example 4.14

www.newnespress.com

206 Chapter 4

Sound_Play

The Sound_Play function plays a sound at a specified port pin. The function receives

two arguments: the period divided by 10 (TDIV) and the number of periods (N). The

first parameter is the period in microcontroller cycles divided by 10. The second

parameter specifies the duration (number of clock periods) of the sound.

The following formula calculates the value used as the first parameter:

TDIV ¼ f

40F

where

TDIV is the number to be used as the first parameter

F is the required sound frequency (Hz)

f is the microcontroller clock frequency (Hz)

/∗∗∗

READING AND WRITING TO SERIAL PORT VIA USART
===

In this program a PIC18F452 microcontroller is used and USART I/O pins are
connected to a terminal through a MAX232 voltage converter chip. The baud rate is
set to 9600. A character is received from a serial terminal, incremented by one and
then sent back to the terminal. Thus, if character “A” is entered on the keyboard,
character “B” will be displayed.

Programmer: Dogan Ibrahim
File: SERIAL2.C
Date: May, 2007
∗∗∗/

void main()
{

unsigned char MyError, Temp;

Usart_Init(9600);
for(; ;)
{

while (!User_Data_Ready()); // Wait for data byte
// Read data byteTemp = Usart_Read();

Temp++; // Increment data byte
Usart_Write(Temp); // Send the byte byte

}
}

// Set baud rate
// Endless loop

Figure 4.26: Program listing of Example 4.14

www.newnespress.com

207Functions and Libraries in mikroC

Example 4.15

Write a program to play a sound at 1KHz, assuming the clock frequency is 4MHz.

The required duration of the sound is 250 periods.

Solution 4.15

The first parameter is calculated as follows:

TDIV ¼ f

40F
¼ 4�106

40�103
¼ 100

Since the required duration is 250 periods, the function is called with the

parameters:

Sound_Play(100, 250);

4.3.6 ANSI C Library

The ANSI C library consists of the following libraries (further details on these libraries

are available in the mikroC user manual):

� Ctype library

� Math library

� Stdlib library

� String library

Ctype Library

The functions in the Ctype library are mainly used for testing or data conversion.

Table 4.6 lists the commonly used functions in this library.

Math Library

The functions in the Math library are used for floating point mathematical operations.

Table 4.7 lists the commonly used functions in this library.

www.newnespress.com

208 Chapter 4

Stdlib Library

The Stdlib library contains standard library functions. Table 4.8 lists the commonly

used functions in this library.

Example 4.16

Write a program to calculate the trigonometric sine of the angles from 0� to 90� in steps

of 1� and store the result in an array called Trig_Sine.

Solution 4.16

The required program listing is shown in Figure 4.27 (program SINE.C). A loop is

created using a for statement, and inside this loop the sine of the angles are calculated

and stored in array Trig_Sine. Note that the angles must be converted into radians

before they are used in function sin.

String Library

The functions in the String library are used to perform string and memory manipulation

operations. Table 4.9 lists the commonly used functions in this library.

Table 4.6: Commonly used Ctype library functions

Function Description

isalnum Returns 1 if the specified character is alphanumeric (a�z, A�Z, 0�9)

isalpha Returns 1 if the specified character is alphabetic (a�z, A�Z)

isntrl Returns 1 if the specified character is a control character (decimal 0�31 and 127)

isdigit Returns 1 if the specified character is a digit (0�9)

islower Returns 1 if the specified character is lowercase

isprint Returns 1 if the specified character is printable (decimal 32�126)

isupper Returns 1 if the specified character is uppercase

toupper Convert a character to uppercase

tolower Convert a character to lowercase

www.newnespress.com

209Functions and Libraries in mikroC

Example 4.17

Write a program to illustrate how the two strings “MY POWERFUL” and

“COMPUTER” can be joined into a new string using String library functions.

Solution 4.17

The required program listing is shown in Figure 4.28 (program JOIN.C). The

mikroC String library function strcat is used to join the two strings pointed to by

p1 and p2 into a new string stored in a character array called New_String.

Table 4.7: Commonly used Math library functions

Function Description

acos Returns in radians the arc cosine of its parameter

asin Returns in radians the arc sine of its parameter

atan Returns in radians the arc tangent of its parameter

atan2 Returns in radians the arc tangent of its parameter where the signs of both
parameters are used to determine the quadrant of the result

cos Returns the cosine of its parameter in radians

cosh Returns the hyperbolic cosine of its parameter

exp Returns the exponential of its parameter

fabs Returns the absolute value of its parameter

log Returns the natural logarithm of its parameter

Log10 Returns the logarithm to base 10 of its parameter

pow Returns the power of a number

sin Returns the sine of its parameter in radians

sinh Returns the hyperbolic sine of its parameter

sqrt Returns the square root of its parameter

tan Returns the tangent of its parameter in radians

tanh Returns the hyperbolic sine of its parameter

www.newnespress.com

210 Chapter 4

/∗∗

TRIGONOMETRIC SINE OF ANGLES 0 to 90 DEGREES
===

This program calculates the trigonometric sine of angles from 0 degrees to
90 degrees in steps of 1 degree. The results are stored in an array called
Trig_Sine.

Programmer: Dogan Ibrahim
File: SINE.C
Date: May, 2007
∗∗/

void main()
{

unsigned char j;
double PI = 3.14159, rads;

for(j = 0; j <= 90; j++)
{

rads = j ∗ PI /180.0;
angle = sin(rad);
Trig_Sine[j] = angle;

}
}

Figure 4.27: Calculating the sine of angles 0� to 90�

Table 4.8: Commonly used Stdlib library functions

Function Description

abs Returns the absolute value

atof Converts ASCII character into floating point number

atoi Converts ASCII character into integer number

atol Converts ASCII character into long integer

max Returns the greater of two integers

min Returns the lesser of two integers

rand Returns a random number between 0 and 32767; function srand must be called to
obtain a different sequence of numbers

srand Generates a seed for function rand so a new sequence of numbers is generated

xtoi Convert input string consisting of hexadecimal digits into integer

www.newnespress.com

211Functions and Libraries in mikroC

4.3.7 Miscellaneous Library

The functions in the Miscellaneous library include routines to convert data from one

type to another type, as well as to perform some trigonometric functions. Table 4.10

lists the commonly used functions in this library.

The following general programs illustrate the use of various library routines available

with the mikroC language.

Table 4.9: Commonly used String library functions

Function Description

strcat, strncat Append two strings

strchr, strpbrk Locate the first occurrence of a character in a string

strcmp, strncmp Compare two strings

strcpy, strncpy Copy one string into another one

strlen Return the length of a string

/∗∗

JOINING TWO STRINGS
===================

This program shows how two strings can be joined to obtain a new string.
mikroC library function strcat is used to join the two strings pointed to by
p1 and p2 into a new string stored in character array New_String.

Programmer:
File:
Date:
∗∗∗/

void main()
{

const char ∗p1 = “MY POWERFUL “; // First string
const char ∗p2 = “COMPUTER”; // Second string
char New_String[80];

strcat(strcat(New_String, p1), p2); // join the two strings
}

Dogan Ibrahim
JOIN.C
May, 2007

Figure 4.28: Joining two strings using function strcat

www.newnespress.com

212 Chapter 4

Example 4.18

Write a function to convert the string pointed to by p into lowercase or uppercase,

depending on the value of a mode parameter passed to the function. If the mode

parameter is nonzero, then convert to lowercase, otherwise convert it to uppercase. The

function should return a pointer to the converted string.

Solution 4.18

The required program listing is given in Figure 4.29 (programCASE.C). The program checks

the value of the mode parameter, and if this parameter is nonzero the string is converted to

lowercase by calling function ToLower, otherwise the function ToUpper is called to convert

the string to uppercase. The program returns a pointer to the converted string.

Example 4.19

Write a program to define a complex number structure, then write functions to add and

subtract two complex numbers. Show how you can use these functions in a main program.

Solution 4.19

Figure 4.30 shows the required program listing (program COMPLEX.C). At the

beginning of the program, a data type called complex is created as a structure having

a real part and an imaginary part. A function called Add is then defined to add two

complex numbers and return the sum as a complex number. Similarly, the function

Table 4.10: Commonly used Miscellaneous
library functions

Function Description

ByteToStr Convert a byte into string

ShortToStr Convert a short into string

WordToStr Convert an unsigned word into string

IntToStr Convert an integer into string

LongToStr Convert a long into string

FloatToStr Convert a float into string

Bcd2Dec Convert a BCD number into decimal

Dec2Bcd Convert a decimal number into BCD

www.newnespress.com

213Functions and Libraries in mikroC

Subtract is defined to subtract two complex numbers and return the result as a complex

number. The main program uses two complex numbers, a and b, where,

a ¼ 2.0 � 3.0j
b ¼ 2.5 þ 2.0j

Two other complex numbers, c and d, are also declared, and the following complex

number operations are performed:

The program calculates, c ¼ a þ b and, d ¼ a � b

Example 4.20

A projectile is fired at an angle of y degrees at an initial velocity of v meters per

second. The distance traveled by the projectile (d), the flight time (t), and the

maximum height reached (h) are given by the following formulas:

h ¼ v2 sinðyÞ
g

t ¼ 2v sinðyÞ
g

d ¼ v2 sinð2yÞ
g

/∗∗∗

CONVERT A STRING TO LOWER/UPPERCASE
======================================

This program receives a string pointer and a mode parameter. If the mode is 1
Then the string is converted to lowercase, otherwise the string is converted to
uppercase.

Programmer:
File:
Date:
∗∗∗/

unsigned char ∗Str_Convert(unsigned char ∗p, unsigned char mode)
{

unsigned char ∗ptr = p;

if (mode != 0)
{

while(∗p != ‘\0’) ∗p++ = ToLower(∗p);
}

}

else
{

while(∗p != ‘\0’) ∗p++ = ToUpper(∗p);

return ptr;
}

Dogan Ibrahim
CASE.C
May, 2007

Figure 4.29: Program for Example 4.18

www.newnespress.com

214 Chapter 4

/∗∗∗

 COMPLEX NUMBER ADDITION AND SUBTRACTION
 ===

This program creates a data structure called complex having a real part and
an imaginary part. Then, functions are defined to add or subtract two complex
numbers and store the result in another complex number.

The first complex number is, a = 2.0 – 2.0j
The second complex number is, b = 2.5 + 2.0j

The program calculates, c = a + b
and, d = a − b

Programmer: Dogan Ibrahim
File: COMPLEX.C
Date: May, 2007
∗∗∗/

/∗ Define a new data type called complex ∗/
typedef struct
{

float real;
float imag;

} complex;

/∗ Define a function to add two complex numbers and return the result as
 a complex number ∗/
complex Add(complex i, complex j)
{

complex z;

z.real = i.real + j.real;
z.imag = i.imag + j.imag

return z;
}

/∗ Define a function to subtract two complex numbers and return the result as
 a complex number ∗/
complex Subtract(complex i, complex j)
{

complex z;

z.real = i.real – j.real;
z.imag = i.imag – j.imag;

return z;

Figure 4.30: Program for Example 4.19
(Continued)

www.newnespress.com

215Functions and Libraries in mikroC

Write functions to calculate the height, flight time, and distance traveled. Assuming

that g ¼ 9.81m/s2, v ¼ 12 m/s, and y ¼ 45�, call the functions to calculate the three

variables. Figure 4.31 shows the projectile pattern.

Solution 4.20

The required program is given in Figure 4.32 (program PROJECTILE.C).

Three functions are defined: Height calculates the maximum height of the

v

h

Distance

Height

Figure 4.31: Projectile pattern

}

/∗ Main program ∗/
void main()
{

complex a,b,c, d;

a.real = 2.0; a.imag =−3.0; // First complex number
b.real = 2.5; b.imag = 2.0; // second complex number

c = Add(a, b); // Add numbers
d = Subtract(a, b); // Subtract numbers

}

Figure 4.30: (Cont’d)

www.newnespress.com

216 Chapter 4

/∗∗

PROJECTILE CALCULATION
========================

This program calculates the maximum height, distance traveled, and the flight
time of a projectile. Theta is the firing angle, and v is the initial velocity of the
projectile respectively.

Programmer: Dogan Ibrahim
File: PROJECTILE.C
Date: May, 2007
∗∗∗/

#define gravity 9.81

/∗ This function converts degrees to radians ∗/
float Radians(float y)
{

float rad;

rad = y ∗ 3.14159 / 180.0;

return rad;
}

/∗ Flight time of the projectile ∗/
float Flight_time(float theta, float v)
{

float t, rad;

rad = Radians(theta);
t = (2.0∗v∗sin(rad)) / gravity;

return t;
}

float Height(float theta, float v)
{

float h, rad;

rad = Radians(theta);
h = (v∗v∗sin(rad)) / gravity;

return h;
}

float Distance(float theta, float v)
{

Figure 4.32: Program for Example 4.20

(Continued)

www.newnespress.com

217Functions and Libraries in mikroC

projectile, Flight_time calculates the flight time, and Distance calculates the

distance traveled. In addition, a function called Radians converts degrees into

radians to use in the trigonometric function sine. The height, distance traveled,

and flight time are calculated and stored in floating point variables h, d,

and t respectively.

4.4 Summary

This chapter has discussed the important topics of functions and libraries. Functions

are useful when part of a code must be repeated several times from different points

of a program. They also make programs more readable and easier to manage

and maintain. A large program can be split into many functions that are tested

independently and, once all of them are working, are combined to produce the

final program.

The mikroC language library functions have also been described briefly, along with

examples of how to use several of these functions in main programs. Library functions

simplify programmers’ tasks by providing ready and tested routines that can be called

and used in their programs.

float d, rad;

rad = radians(theta);
d = (v∗v∗sin(2∗rad)) / gravity;

return d;
}

/∗ Main program ∗/
void main()
{

float theta, v, h, d, t;

theta = 45.0;
v = 12.0;
h = Height(theta, v);
d = Distance(theta, v);
t = Flight_time(theta, v);

}

Figure 4.32: (Cont’d)

www.newnespress.com

218 Chapter 4

4.5 Exercises

1. Write a function to calculate the circumference of a rectangle. The function should

receive the two sides of the rectangle as floating point numbers and return the

circumference as a floating point number.

2. Write a main program to use the function you developed in Exercise 1. Find the

circumference of a rectangle whose sides are 2.3cm and 5.6cm. Store the result in

a floating point number called MyResult.

3. Write a function to convert inches to centimeters. The function should receive

inches as a floating point number and then calculate the equivalent centimeters.

4. Write a main program to use the function you developed in Exercise 3. Convert

12.5 inches into centimeters and store the result as a floating point number.

5. An LED is connected to port pin RB0 of a PIC18F452-type microcontroller

through a current limiting resistor in current sinking mode. Write a program to

flash the LED in five-second intervals.

6. Eight LEDs are connected to PORTB of a PIC18F452-type microcontroller. Write

a program so that the LEDs count up in binary sequence with a one-second delay

between outputs.

7. An LED is connected to port pin RB7 of a PIC18F452 microcontroller. Write a

program to flash the LED such that the ON time is five seconds, and the OFF time

is three seconds.

8. A text-based LCD is connected to a PIC18F452-type microcontroller in 4-bit data

mode. Write a program that will display a count from 0 to 255 on the LCD with a

one-second interval between counts.

9. A text-based LCD is connected to a PIC microcontroller as in Exercise 8. Write a

program to display the text “Exercise 9” on the first row of the LCD.

10. Repeat Exercise 9 but display the message on the first row, starting from column 3

of the LCD.

11. A two-row text-based LCD is connected to a PIC18F452-type microcontroller in

4-bit-data mode. Write a program to display the text “COUNTS:” on row 1 and

then to count repeatedly from 1 to 100 on row 2 with two-second intervals.

www.newnespress.com

219Functions and Libraries in mikroC

12. Write a program to calculate the trigonometric cosine of angles from 0� to 45� in
steps of 1� and store the results in a floating point array.

13. Write a function to calculate and return the length of the hypotenuse of a right-

angle triangle, given its two sides. Show how you can use the function in a main

program to calculate the hypotenuse of a right-angle triangle whose two sides are

4.0cm and 5.0cm.

14. Write a program to configure port pin RB2 of a PIC18F452 microcontroller as the

RS232 serial output port. Send character “X” to this port at 4800 baud.

15. Port RB0 of a PIC18F452 microcontroller is configured as the RS232 serial output

port. Write a program to send out string “SERIAL” at 9600 baud.

16. Repeat Exercise 15 but use the hardware USART available on the microcontroller

chip.

17. Explain the differences between software-implemented serial data communication

and USART hardware-based serial communication.

18. Write a function to add two arrays that are passed to the function as arguments.

Store the sum in one of these arrays.

19. Write a function to perform the following operations on two-dimensional matrices:

a) Add matrices

b) Subtract matrices

c) Multiply matrices

20. Write a function to convert between polar and rectangular coordinates.

21. Write functions to convert temperature expressed in Celsius to Fahrenheit and vice

versa. Show how these functions can be called from main programs to convert

20�C to �F and also 100�F to �C.

22. Write a program to store the value of function f(x) in an array as x is varied from

0 to 10 in steps of 0.5. Assume that:

fðxÞ ¼ 1:3x3 � 2:5x2 þ 3:1x� 4:5

www.newnespress.com

220 Chapter 4

CHAP T E R 5

PIC18 Development Tools

The development of a microcontroller-based system is a complex process. Development

tools are hardware and software tools designed to help programmers develop and test

systems in a relatively short time. There are many such tools, and a discussion of all of

them is beyond the scope of this book. This chapter offers a brief review of the most

common tools.

The tools for developing software and hardware for microcontroller-based systems

include editors, assemblers, compilers, debuggers, simulators, emulators, and device

programmers. A typical development cycle starts with writing the application

program using a text editor. The program is then translated into an executable code

with the help of an assembler or compiler. If the program has several modules, a

linker is used to combine them into a single application. Any syntax errors are

detected by the assembler or compiler and must be corrected before the executable

code can be generated. Next, a simulator is used to test the application program

without the target hardware. Simulators are helpful in checking the correctness of an

algorithm or a program with limited or no input-outputs, and most errors can be

removed during simulation. Once the program seems to be working and the

programmer is happy with it, the executable code is loaded to the target

microcontroller chip using a device programmer, and the system logic is tested.

Software and hardware tools such as in-circuit debuggers and in-circuit emulators can

analyze the program’s operation and display the variables and registers in real time

with the help of breakpoints set in the program.

www.newnespress.com

5.1 Software Development Tools

Software development tools are computer programs, usually run on personal computers,

that allow the programmer (or system developer) to create, modify, and test applications

programs. Some common software development tools are:

� Text editors

� Assemblers/compilers

� Simulators

� High-level language simulators

� Integrated development environments (IDEs)

5.1.1 Text Editors

A text editor is used to create or edit programs and text files. The Windows operating

system comes with a text editor program called Notepad. Using Notepad, we can create

a new program file, modify an existing file, or display or print the contents of a file. It is

important to realize that programs used for word processing, such as Microsoft Word,

cannot be used for this purpose, since they embed word formatting characters such as

bold, italic, and underline within the text.

Most assemblers and compilers come with built-in text editors, making it possible

to create a program and then assemble or compile it without having to exit from the

editor. These editors provide additional features as well, such as automatic keyword

highlighting, syntax checking, parenthesis matching, and comment line identification.

Different parts of a program can be shown in different colors to make the program

more readable (e.g., comments in one color and keywords in another). Such features

help to eliminate syntax errors during the programming stage, thus speeding up the

development process.

5.1.2 Assemblers and Compilers

Assemblers generate executable code from assembly language programs, and that

generated code can then be loaded into the flash program memory of a PIC18-based

microcontroller. Compilers generate executable code from high-level language programs.

The compilers used most often for PIC18 microcontrollers are BASIC, C, and PASCAL.

www.newnespress.com

222 Chapter 5

Assembly language is used in applications where processing speed is critical and the

microcontroller must respond to external and internal events in the shortest possible

time. However, it is difficult to develop complex programs using assembly language,

and assembly language programs are not easy to maintain.

High-level languages, on the other hand, are easier to learn, and complex programs can

be developed and tested in a much shorter time. High-level programs are also

maintained more easily than assembly language programs.

Discussions of programming in this book are limited to the C language. Many different

C language compilers are available for developing PIC18 microcontroller-based

programs. Some of the popular ones are:

� CCS C (http://www.ccsinfo.com)

� Hi-Tech C (http://htsoft.com)

� C18 C (http://www.microchip.com)

� mikroC C (http://www.mikroe.com)

� Wiz-C C (http://www.fored.co.uk)

Although most C compilers are essentially the same, each one has its own additions or

modifications to the standard language. The C compiler used in this book is mikroC,

developed by mikroElektronika.

5.1.3 Simulators

A simulator is a computer program that runs on a PC without the microcontroller

hardware. It simulates the behavior of the target microcontroller by interpreting

the user program instructions using the microcontroller instruction set. Simulators can

display the contents of registers, memory, and the status of input-output ports as

the user program is interpreted. Breakpoints can be set to stop the program and

check the contents of various registers at desired locations. In addition, the user

program can be executed in a single-step mode, so the memory and registers

can be examined as the program executes one instruction at a time as a key is

pressed.

Some assembler programs contain built-in simulators. Three popular PIC18

microcontroller assemblers with built-in simulators are:

www.newnespress.com

223PIC18 Development Tools

� MPLAB IDE (http://www.microchip.com)

� Oshon Software PIC18 simulator (http://www.oshonsoft.com)

� Forest Electronics PIC18 assembler (http://www.fored.co.uk)

5.1.4 High-Level Language Simulators

High-level language simulators, also known as source-level debuggers, are programs that

run on a PC and locate errors in high-level programs. The programmer can set breakpoints

in high-level statements, execute the program up to a breakpoint, and then view the values

of program variables, the contents of registers, and memory locations at that breakpoint.

A source-level debugger can also invoke hardware-based debugging using a hardware

debugger device. For example, the user program on the target microcontroller can be

stopped and the values of various variables and registers can be examined.

Some high-level language compilers, including the following three, have built-in

source-level debuggers:

� C18 C

� Hi-Tech PIC18 C

� mikroC C

5.1.5 Integrated Development Environments (IDEs)

Integrated development environments (IDEs) are powerful PC-based programs which

include everything to edit, assemble, compile, link, simulate, and source-level debug

a program, and then download the generated executable code to the physical

microcontroller chip using a programmer device. These programs are in graphical user

interface (GUI), where the user can select various options from the program without

having to exit it. IDEs can be extremely useful when developing microcontroller-based

systems. Most PIC18 high-level language compilers are IDEs, thus enabling the

programmer to do most tasks within a single software development tool.

5.2 Hardware Development Tools

Numerous hardware development tools are available for the PIC18 microcontrollers.

Some of these products are manufactured by Microchip Inc., and some by third-party

companies. The most ones are:

www.newnespress.com

224 Chapter 5

� Development boards

� Device programmers

� In-circuit debuggers

� In-circuit emulators

� Breadboards

5.2.1 Development Boards

Development boards are invaluable microcontroller development tools. Simple

development boards contain just a microcontroller and the necessary clock circuitry.

Some sophisticated development boards contain LEDs, LCD, push buttons, serial

ports, USB port, power supply circuit, device programming hardware, and so on.

This section is a survey of various commercially available PIC18 microcontroller

development boards and their specifications.

LAB-XUSB Experimenter Board

The LAB-XUSB Experimenter board (see Figure 5.1), manufactured by

microEngineering Labs Inc., can be used in 40-pin PIC18-based project development.

The board is available either assembled or as a bare board.

The board contains:

� 40-pin ZIF socket for PIC microcontroller

� 5-volt regulator

� 20MHz oscillator

� Reset button

� 16-switch keypad

� Two potentiometers

� Four LEDs

� 2-line by 20-character LCD module

� Speaker

www.newnespress.com

225PIC18 Development Tools

� RC servo connector

� RS232 interface

� USB connector

� Socket for digital-to-analog converter (device not included)

� Socket for I2C serial EEPROM (device not included)

� Socket for Dallas DS1307 real-time clock (device not included)

� Pads for Dallas DS18S20 temperature sensors (device not included)

� In-circuit programming connector

� Prototyping area for additional circuits

PICDEM 2 Plus

Th PICDEM 2 Plus kit (see Figure 5.2), manufactured by Microchip Inc., can be used in

the development of PIC18 microcontroller-based projects.

Figure 5.1: LAB-XUSB Experimenter board

www.newnespress.com

226 Chapter 5

The board contains:

� 2 � 16 LCD display

� Piezo sounder driven by PWM signal

� Active RS 232 port

� On-board temperature sensor

� Four LEDs

� Two push-button switches and master reset

� Sample PIC18F4520 and PIC16F877A flash microcontrollers

� MPLAB REAL ICE/MPLAB ICD 2 connector

� Source code for all programs

� Demonstration program displaying a real-time clock and ambient

temperature

� Generous prototyping area

� Works off of a 9V battery or DC power pack

Figure 5.2: PICDEM 2 Plus development board

www.newnespress.com

227PIC18 Development Tools

PICDEM 4

The PICDEM 4 kit (see Figure 5.3), manufactured by Microchip Inc., can be used in the

development of PIC18 microcontroller-based projects.

The board contains:

� Three different sockets supporting 8-, 14-, and 18-pin DIP devices

� On-board þ5V regulator for direct input from 9V, 100 mA AC/DC wall adapter

� Active RS-232 port

� Eight LEDs

� 2 � 16 LCD display

� Three push-button switches and master reset

� Generous prototyping area

� I/O expander

� Supercapacitor circuitry

� Area for an LIN transceiver

Figure 5.3: PICDEM 4 development board

www.newnespress.com

228 Chapter 5

� Area for a motor driver

� MPLAB ICD 2 connector

PICDEM HPC Explorer Board

The PICDEM HPC Explorer development board (see Figure 5.4), manufactured by

Microchip Inc., can be used in the development of high pin count PIC18-series

microcontroller-based projects.

The main features of this board are:

� PIC18F8722, 128K flash, 80-pin TQFP microcontroller

� Supports PIC18 J-series devices with plug-in modules

� 10MHz crystal oscillator (to be used with internal PLL to provide 40MHz

operation)

� Power supply connector and programmable voltage regulator, capable of

operation from 2.0 to 5.5V

� Potentiometer (connected to 10-bit A/D, analog input channel)

� Temperature sensor demo included

Figure 5.4: PICDEM HPC Explorer development board

www.newnespress.com

229PIC18 Development Tools

� Eight LEDs (connected to PORTD with jumper disable)

� RS-232 port (9-pin D-type connector, UART1)

� Reset button

� 32KHz crystal for real-time clock demonstration

MK-1 Universal PIC Development Board

The MK-1 Universal PIC development board (see Figure 5.5), manufactured by Baji

Labs, can be used for developing PIC microcontroller-based projects with up to 40 pins.

The board has a key mechanism which allows any peripheral device to be mapped to

any pin of the processor, making the board very flexible. A small breadboard area is

also provided, enabling users to design and test their own circuits.

Figure 5.5: MK-1 Universal PIC development board

www.newnespress.com

230 Chapter 5

The board has the following features:

� On-board selectable 3.3V or 5V

� 16 � 2 LCD character display (8- or 4-bit mode supported)

� 4-digit multiplexed 7-segment display

� Ten LED bar graph (can be used as individual LEDs)

� Eight-position dip switch

� Socketed oscillator for easy change of oscillators

� Stepper motor driver with integrated driver

� I2C real-time clock with crystal and battery backup support

� I2C temperature sensor with 0.5 degree C precision

� Three potentiometers for direct A/D development

� 16-button telephone keypad wired as 4 � 4 matrix

� RS232 driver with standard DB9 connector

� Socketed SPI and I2C EEPROM

� RF Xmit and receive sockets

� IR Xmit and receive

� External drive buzzer

� Easy access to pull up resistors

� AC adapter included

SSE452 Development Board

The SSE452 development board (see Figure 5.6), manufactured by Shuan Shizu Electronic

Laboratory, can be used for developing PIC18-based microcontroller projects, especially

the PIC18FXX2 series of microcontrollers, and also for programming the microcontrollers.

The main features of this board are:

� One PCB suitable for any 28- or 40-pin PIC18 devices

� Three external interrupt pins

www.newnespress.com

231PIC18 Development Tools

� Two input-capture/output-compare/pulse-width modulation modules (CCP)

� Support SPI, I2C functions

� 10-bit analog-to-digital converter

� RS-232 connector

� Two debounced push-button switches

� An 8-bit DIP-switch for digital input

� 4 � 4 keypad connector

� Rotary encoder with push button

� TC77 SPI temperature sensor

� EEPROM (24LC04B)

� 2 � 20 bus expansion port

� ICD2 connector

� On-board multiple digital signals from 1Hz to 8MHz

� Optional devices are 2 � 20 character LCD, 48/28-pin ZIF socket

Figure 5.6: SSE452 development board

www.newnespress.com

232 Chapter 5

SSE8720 Development Board

The SSE8720 development board (see Figure 5.7), manufactured by Shuan Shizu

Electronic Laboratory, can be used for the development of PIC18-based microcontroller

projects. A large amount of memory and I/O interface is provided, and the board can

also be used to program microcontrollers.

The main features of this board are:

� 20MHz oscillator with socket

� One DB9 connector provides EIA232 interface

� In-circuit debugger (ICD) connector

� Four debounced switches, and one reset switch

� 4 � 4 keypad connector

� One potentiometer for analog-to-digital conversion

� Eight red LEDs

� 8-bit DIP switch for digital inputs

� 2 � 20 character LCD module

� Twenty-four different digital signals, from 1Hz to 16MHz

Figure 5.7: SSE8720 development board

www.newnespress.com

233PIC18 Development Tools

� On-board 5V regulator

� One I2C EEPROM with socket

� SPI-compatible digital temperature sensor

� SPI-compatible real-time clock

� CCP1 output via an NPN transistor

SSE8680 Development Board

The SSE8680 development board (see Figure 5.8), manufactured by Shuan Shizu

Electronic Laboratory, can be used for developing PIC18-based microcontroller

projects. The board supports CAN network, and a large amount of memory and I/O

interface is provided. The board can also be used to program microcontrollers.

The main features of this board are:

� 20MHz oscillator with socket

� One DB9 connector provides EIA232 interface

� In-circuit debugger (ICD) connector

� Four debounced switches, and one reset switch

� 4 � 4 keypad connector

Figure 5.8: SSE8680 development board

www.newnespress.com

234 Chapter 5

� One potentiometer for analog-to-digital conversion

� 8 red LEDs

� 8-bit DIP switch for digital inputs

� 2 � 20 character LCD module

� Twenty-four different digital signals, from 1Hz to 16MHz

� On-board 5V regulator

� One I2C EPROM with socket

� SPI-compatible digital temperature sensor

� SPI-compatible real-time clock

� CCP1 output via an NPN transistor

� Rotary encoder

� CAN transceiver

PIC18F4520 Development Kit

The PIC18F4520 development kit (see Figure 5.9), manufactured by Custom Computer

Services Inc., includes a C compiler (PCWH), a prototyping board with PIC18F4520

microcontroller, an in-circuit debugger, and a programmer.

Figure 5.9: PIC18F4520 development kit

www.newnespress.com

235PIC18 Development Tools

The main features of this development kit are:

� PCWH compiler

� PIC18F4520 prototyping board

� Breadboard area

� 93LC56 serial EEPROM chip

� DS1631 digital thermometer chip

� NJU6355 real-time clock IC with attached 32.768KHz crystal

� Two-digit 7-segment LED module

� In-circuit debugger/programmer

� DC adapter and cables

Custom Computer Services manufactures a number of other PIC18microcontroller-based

development kits and prototyping boards, such as development kits for CAN, Ethernet,

Internet, USB, and serial buses. More information is available on the company’s web site.

BIGPIC4 Development Kit

The BIGPIC4 is a sophisticated development kit (Figure 5.10) that supports the

latest 80-pin PIC18 microcontrollers. The kit comes already assembled, with a

Figure 5.10: BIGPIC4 development kit

www.newnespress.com

236 Chapter 5

PIC18F8520 microcontroller installed and working at 10MHz. It includes an

on-board USB port, an on-board programmer, and an in-circuit debugger. The

microcontroller on the board can be replaced easily.

The main features of this development kit are:

� Forty-six buttons

� Forty-six LEDs

� USB connector

� External or USB power supply

� Two potentiometers

� Graphics LCD

� 2 � 16 text LCD

� MMC/SD memory card slot

� Two serial RS232 ports

� In-circuit debugger

� Programmer

� PS2 connector

� Digital thermometer chip (DS1820)

� Analog inputs

� Reset button

The BIGPIC4 is used in some of the projects in this book.

FUTURLEC PIC18F458 Training Board

The FUTURLEC PIC18F458 training board is a very powerful development kit

(see Figure 5.11) based on the PIC18F458 microcontroller and developed by

Futurlec (www.futurlec.com). The kit comes already assembled and tested. One

of its biggest advantages is its low cost, at under $45.

www.newnespress.com

237PIC18 Development Tools

Its main features are:

� PIC18F458 microcontroller with 10MHz crystal

� RS232 communication

� Test LED

� Optional real-time clock chip with battery backup

� LCD connection

� Optional RS485/RS422 with optional chip

� CAN and SPI controller

� I2C expansion

� In-circuit programming

� Reset button

� Speaker

� Relay socket

� All port pins are available at connectors

Figure 5.11: FUTURLEC PIC18F458 training board

www.newnespress.com

238 Chapter 5

5.2.2 Device Programmers

After the program is written and translated into executable code, the resulting HEX

file is loaded to the target microcontroller’s program memory with the help of a

device programmer. The type of device programmer depends on the type of

microcontroller to be programmed. For example, some device programmers can

only program PIC16 series, some can program both PIC16 and PIC18 series,

while some are designed to program other microcontroller models (e.g., the Intel

8051 series).

Some microcontroller development kits include on-board device programmers, so

the microcontroller chip does not need to be removed and inserted into a separate

programming device. This section describes some of the popular device programmers

used to program PIC18 series of microcontrollers.

Forest Electronics USB Programmer

The USB programmer, manufactured by Forest Electronics (see Figure 5.12), can be used

to program most PIC microcontrollers with up to 40 pins, including the PIC18 series. The

device is connected to the USB port of a PC and takes its power from this port.

Figure 5.12: Forest Electronics USB programmer

www.newnespress.com

239PIC18 Development Tools

Mach X Programmer

The Mach X programmer (Figure 5.13), manufactured by Custom Computer Services

Inc., can program microcontrollers of the PIC12, PIC14, PIC16, and PIC18 series

ranging from 8 to 40 pins. It can also read the program inside a microcontroller and then

generate a HEX file. In-circuit debugging is also supported by this programmer.

Melabs U2 Programmer

The Melabs U2 device programmer (see Figure 5.14), manufactured by

microEngineering Labs Inc., can be used to program most PIC microcontroller

chips having from 8 to 40 pins. The device is USB-based and receives its power

from the USB port of a PC.

Figure 5.13: Mach X programmer

www.newnespress.com

240 Chapter 5

EasyProg PIC Programmer

The EasyProg PIC is a low-cost programmer (Figure 5.15) used with microcontrollers

of the PIC16 and PIC18 series having up to 40 pins. It connects to a PC via a 9-pin

serial cable.

Figure 5.14: Melabs U2 programmer

Figure 5.15: EasyProg programmer

www.newnespress.com

241PIC18 Development Tools

PIC Prog Plus Programmer

The PIC Prog Plus is another low-cost programmer (Figure 5.16) that can be used to

program most PIC microcontrollers. The device is powered from an external 12V DC

supply.

5.2.3 In-Circuit Debuggers

An in-circuit debugger is hardware connected between a PC and the target

microcontroller test system used to debug real-time applications quickly and easily.

With in-circuit debugging, a monitor program runs in the PIC microcontroller in the test

circuit. The programmer can set breakpoints on the PIC, run code, single-step the

program, and examine variables and registers on the real device and, if required, change

their values. An in-circuit debugger uses some memory and I/O pins of the target PIC

microcontroller during debugging operations. Some in-circuit debuggers only debug

assembly language programs. Other, more powerful debuggers can debug high-level

language programs.

Figure 5.16: PIC Prog Plus programmer

www.newnespress.com

242 Chapter 5

This section discusses some of the popular in-circuit debuggers used in PIC18

microcontroller-based system applications.

ICD2

The ICD2, a low-cost in-circuit debugger (see Figure 5.17) manufactured by Microchip

Inc., can debug most PIC microcontroller-based systems. With the ICD2, programs are

downloaded to the target microcontroller chip and executed in real time. This debugger

supports both assembly language and C language programs.

The ICD2 connects to a PC through either a serial RS232 or a USB interface. The

device acts like an intelligent interface between the PC and the test system, allowing

the programmer to set breakpoints, look into the test system, view registers and

variables at breakpoints, and single-step through the user program. It can also be

used to program the target PIC microcontroller.

ICD-U40

The ICD-U40 is an in-circuit debugger (see Figure 5.18) manufactured by Custom

Computer Services Inc. to debug programs developed with their CCS C compiler.

The device operates with a 40MHz clock frequency, is connected to a PC via the

USB interface, and is powered from the USB port. The company also manufactures

Figure 5.17: ICD2 in-circuit debugger

www.newnespress.com

243PIC18 Development Tools

a serial-port version of this debugger called ICD-S40, which is powered from the

target test system.

PICFlash 2

The PICFlash 2 in-circuit debugger (see Figure 5.19) is manufactured by

mikroElektronika and can be used to debug programs developed in mikroBasic,

mikroC, or mikroPascal languages. The device is connected to a PC through its USB

Figure 5.18: ICD-U40 in-circuit debugger

Figure 5.19: PICFlash 2 in-circuit debugger

www.newnespress.com

244 Chapter 5

interface. Power is drawn from the USB port so the debugger requires no external

power supply. The PICFlash 2 is included in the BIGPIC4 development kit. Details

on the use of this in-circuit debugger are discussed later in this chapter.

5.2.4 In-Circuit Emulators

The in-circuit emulator (ICE) is one of the oldest and the most powerful devices for

debugging a microcontroller system. It is also the only tool that substitutes its own

internal processor for the one in the target system. Like all in-circuit debuggers, the

emulator’s primary function is target access—the ability to examine and change the

contents of registers, memory, and I/O. Since the emulator replaces the CPU, it does not

require a working CPU in the target system. This makes the in-circuit emulator by far

the best tool for troubleshooting new or defective systems.

In general, each microcontroller family has its own set of in-circuit emulators. For

example, an in-circuit emulator designed for the PIC16 microcontrollers cannot be

used for PIC18 microcontrollers. Moreover, the cost of in-circuit emulators is usually

quite high. To keep costs down, emulator manufacturers provide a base board which

can be used with most microcontrollers in a given family, for example, with all PIC

microcontrollers, and also make available probe cards for individual microcontrollers.

To emulate a new microcontroller in the same family, then, only the specific probe

card has to be purchased.

Several models of in-circuit emulators are available on the market. The following four

are some of the more popular ones.

MPLAB ICE 4000

The MPLAB ICE 4000 in-circuit emulator (Figure 5.20), manufactured by Microchip

Inc., can be used to emulate microcontrollers in the PIC18 series. It consists of

an emulator pod connected with a flex cable to device adapters for the specific

microcontroller. The pod is connected to the PC via its parallel port or USB

port. Users can insert an unlimited number of breakpoints in order to examine

register values.

RICE3000

The RICE3000 is a powerful in-circuit emulator (Figure 5.21), manufactured by

Smart Communications Ltd, for the PIC16 and PIC18 series of microcontrollers.

www.newnespress.com

245PIC18 Development Tools

Figure 5.20: MPLAB ICE 4000

Figure 5.21: RICE3000 in-circuit emulator

www.newnespress.com

246 Chapter 5

The device consists of a base unit with different probe cards for the various members

of the PIC microcontroller family. It provides full-speed real-time emulation up to

40MHz, supports observation of floating point variables and complex variables such

as arrays and structures, and provides source level and symbolic debugging in

both assembly and high-level languages.

ICEPIC 3

The ICEPIC 3 is a modular in-circuit emulator (see Figure 5.22), manufactured by RF

Solutions, for the PIC12/16 and PIC18 series of microcontrollers. It connects to the PC

via its USB port and consists of a mother board with additional daughter boards for each

microcontroller type. The daughter boards are connected to the target system with

device adapters. A trace board can be added to capture and analyze execution addresses,

opcodes, and external memory read/writes.

PICE-MC

The PICE-MC, a highly sophisticated emulator (see Figure 5.23) manufactured by

Phyton Inc., supports most PIC microcontrollers and consists of a main board, pod,

and adapters. The main board contains the emulator logic, memory, and an interface

to the PC. The pod contains a slave processor that emulates the target microcontroller.

The adapters are the mechanical parts that physically connect to the microcontroller

sockets of the target system. The PICE-MC provides source-level debugging of

Figure 5.22: ICEPIC 3 in-circuit emulator

www.newnespress.com

247PIC18 Development Tools

programs written in both assembly and high-level languages. A large memory is

provided to capture target system data. The user can set up a large number of

breakpoints and can access the program and data memories to display or change

their contents.

5.2.5 Breadboards

Building an electronic circuit requires connecting the components as shown

in the relevant circuit diagram, usually by soldering the components together

on a strip board or a printed circuit board (PCB). This approach is appropriate

for circuits that have been tested and are functioning as desired, and also

when the circuit is being made permanent. However, making a PCB design for

just a few applications—for instance, while still developing the circuit—is not

economical.

Instead, while the circuit is still under development, the components are usually

assembled on a solderless breadboard. A typical breadboard (see Figure 5.24)

consists of rows and columns of holes spaced so that integrated circuits and other

components can be fitted inside them. The holes have spring actions so the

component leads are held tightly in place. There are various types and sizes of

breadboards, suitable for circuits of different complexities. Breadboards can also be

Figure 5.23: PICE-MC in-circuit emulator

www.newnespress.com

248 Chapter 5

stacked together to make larger boards for very complex circuits. Figure 5.25 shows

the internal connection layout of the breadboard in Figure 5.24.

The top and bottom halves of the breadboard are entirely separate. Columns 1 to 20

in rows A to F are connected to each other on a column basis. Rows G to L in

columns 1 to 20 are likewise connected to each other on a column basis. Integrated

circuits are placed such that the legs on one side are on the top half of the breadboard,

and the legs on the other side are on the bottom half. The two columns on the

far left of the board are usually reserved for the power and ground connections.

Connections between components are usually made with stranded (or solid) wires

plugged into the holes to be connected.

Figure 5.26 shows a breadboard holding two integrated circuits and a number of

resistors and capacitors.

BA C D E F HG I J K L
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 5.24: A typical breadboard layout

www.newnespress.com

249PIC18 Development Tools

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

A B C D E F G H I J K L

Figure 5.25: Internal wiring of the breadboard in Figure 5.24

Figure 5.26: Picture of a breadboard with some components

www.newnespress.com

The nice thing about breadboard design is that the circuit can be modified

easily and quickly, and ideas can be tested without having to solder the

components. Once a circuit has been tested and is working satisfactorily,

the components are easily removed and the breadboard can be used for other

projects.

5.3 mikroC Integrated Development
Environment (IDE)

In this book we are using the mikroC compiler developed by mikroElektronika.

Before using this compiler, we need to know how the mikroC integrated

development environment (IDE) is organized and how to write, compile, and

simulate a program in the mikroC language. In this section we will look at the

operation of the mikroC IDE in detail.

A free 2K program size limited version of the mikroC IDE, available on the

mikroElektronika web site (www.mikroe.com), is adequate for most small or medium-

sized applications. Alternatively, you can purchase a license and turn the limited

version into a fully working, unlimited IDE to use for projects of any size

and complexity.

After installing the mikroC IDE, a new icon should appear by default on your

desktop. Double-click this icon to start the IDE.

5.3.1 mikroC IDE Screen

After the mikroC icon is double-clicked to start the IDE, the screen shown in

Figure 5.27 is displayed by default.

The screen is divided into four areas: the top-left section, the bottom-left section, the

middle section, and the bottom section.

Top-Left Section

The top left, the Code Explorer section, displays every declared item in the source

code. In the example in Figure 5.28, main is listed under Functions and variables

Sum and i are listed under main.

www.newnespress.com

251PIC18 Development Tools

There are two additional tabs in the Code Explorer. As shown in Figure 5.29, the

QHelp tab lists all the available built-in functions and library functions for a quick

reference.

The Keyboard tab lists all the available keyboard shortcuts in mikroC IDE (see

Figure 5.30).

Bottom-Left Section

In the bottom-left section, called Project Setup (see Figure 5.31), the microcontroller

device type, clock rate, and build type are specified. The build type can be either

Code Explorer

Project Setup Message
Window

Code
Editor

Figure 5.27: mikroC IDE screen

www.newnespress.com

252 Chapter 5

Release, which is the normal compiler operating mode, or ICD debug, if the program is

to be debugged using the in-circuit debugger.

The Project Setup section has a tab called Project Summary which lists all the types of

files used in the project, as shown in Figure 5.32.

Middle Section

The middle section is the Code Editor, an advanced text editor. Programs are written in

this section of the screen. The Code Editor supports:

� Code Assistant

� Parameter Assistant

� Code Template

� Auto Correct

� Bookmarks

Figure 5.28: Code Explorer form

www.newnespress.com

253PIC18 Development Tools

The Code Assistant is useful when writing a program. Type the first few letters of

an identifier and then press the CTRLþSPACE keys to list all valid identifiers

beginning with those letters. In Figure 5.33, for example, to locate identifier strlen,

the letters str are typed and CTRLþSPACE is pressed. strlen can be selected from

the displayed list of matching valid words by using keyboard arrows and pressing

ENTER.

Figure 5.29: QHelp form

www.newnespress.com

254 Chapter 5

The Parameter Assistant is invoked when a parenthesis is opened after a function or a

procedure name. The expected parameters are listed in a small window just above the

parenthesis. In Figure 5.34, function strlen has been entered, and unsigned char *s

appears in a small window when a parenthesis is opened.

Code Template is used to generate code in the program. For example, as shown in

Figure 5.35, typing switch and pressing CTRLþJ automatically generates code for the

Figure 5.30: Keyboard form

www.newnespress.com

255PIC18 Development Tools

switch statement. We can add our own templates by selecting Tools -> Options -> Auto

Complete. Some of the available templates are array, switch, for, and if.

Auto Correct corrects typing mistakes automatically. A new list of recognized words

can be added by selecting Tools -> Options -> Auto Correct Tab.

Figure 5.31: Project setup form

Figure 5.32: Project summary form

www.newnespress.com

256 Chapter 5

Figure 5.33: Using the Code Assistant

Figure 5.34: Using the Parameter Assistant

Figure 5.35: Using the Code Template

www.newnespress.com

257PIC18 Development Tools

Bookmarks make the navigation easier in large code. We can set bookmarks by

entering CTRLþSHIFTþnumber, and can then jump to the bookmark by pressing

CTRLþnumber, where number is the bookmark number.

Bottom Section

The bottom section of the screen, also called the Message Window, consists of three

tabs: Messages, Find, and QConverter. Compilation errors and warnings are reported

under the Messages tab. Double-clicking on a message line highlights the line where

the error occurred. A HEX file can be generated only if the source file contains

no errors. Figure 5.36 shows the results of a successful compilation listed in the

Message Window. The QConverter tab can be used to convert decimal numbers

into binary or hexadecimal, and vice versa.

5.3.2 Creating and Compiling a New File

mikroC files are organized into projects, and all files for a single project are stored in

the same folder. By default, a project file has the extension “.ppc”. A project file

contains the project name, the target microcontroller device, device configuration flags,

the device clock, and list of source files with their paths. C source files have the

extension “.c”.

The following example illustrates step-by-step how to create and compile a program

source file.

Example 5.1

Write a C program to calculate the sum of the integer numbers 1 to 10 and then send the

result to PORTC of a PIC18F452-type microcontroller. Assume that eight LEDs are

connected to the microcontroller’s PORTC via current limiting resistors. Draw the

circuit diagram and show the steps involved in creating and compiling the program.

Figure 5.36: Display of a successful compilation

www.newnespress.com

258 Chapter 5

Solution 5.1

Figure 5.37 shows the circuit diagram of the project. The LEDs are connected to

PORTC using 390 ohm current limiting resistors. The microcontroller is operated

from a 4MHz resonator.

The program is created and compiled as follows:

Step 1 Double-click the mikroC icon to start the IDE.

Step 2 Create a new project called EXAMPLE. Click Project -> New Project and

fill in the form, as shown in Figure 5.38, by selecting the device type, the clock, and

the configuration fuse.

Figure 5.37: Circuit diagram of the project

www.newnespress.com

259PIC18 Development Tools

Step 3 Enter the following program into the Code Editor section of the IDE:

/**

EXAMPLE PROGRAM

8 LEDs are connected to a PIC18F452 type microcontroller.

This program calculates the sum of integer numbers from 1 to 10

And then displays the sum on PORTC of the microcontroller.

Author: Dogan Ibrahim

File: EXAMPLE.C

**/

Figure 5.38: Creating a new project

www.newnespress.com

260 Chapter 5

void main()
{

unsigned int Sum,i;
TRISC ¼ 0;

Sum ¼ 0;
for(i¼1; i<¼ 10; iþþ)
{

Sum ¼ Sum þ i;
}

PORTC ¼ Sum;
}

Step 4 Save the program with the name EXAMPLE by clicking File -> Save As. The

program will be saved with the name EXAMPLE.C.

Step 5 Compile the project by pressing CTRLþF9 or by clicking the Build Project

button (see Figure 5.39).

Step 6 If the compilation is successful, a Success message will appear in the Message

Window as shown in Figure 5.36. Any program errors will appear in the Message

Window and should be corrected before the project proceeds further.

The compiler generates a number of output files, which can be selected by clicking

Tools -> Options -> Output. The various output files include:

.ASM file This is the assembly file of the program. Figure 5.40 shows the EXAMPLE.

ASM file.

Build Project
button

Figure 5.39: Build Project button

www.newnespress.com

261PIC18 Development Tools

.LST file This is the listing file of the program. Figure 5.41 shows the EXAMPLE.LST

file.

; ASM code generated by mikroVirtualMachine for PIC - V. 6.2.1.0
; Date/Time: 07/07/2007 16:46:12
; Info: http://www.mikroelektronika.co.yu

; ADDRESS OPCODE ASM
; --
$0000 $EF04 F000 GOTO _main
$0008 $ _main:
;EXAMPLE.c,14 :: void main()
;EXAMPLE.c,18 :: TRISC = 0;
$0008 $6A94 CLRF TRISC, 0
;EXAMPLES.c,20 :: Sum = 0;
$000A $6A15 CLRF main_Sum_L0, 0
$000C $6A16 CLRF main_Sum_L0+1, 0
;EXAMPLE.c,21 :: for(i=1; i<= 10; i++)
$000E $0E01 MOVLW 1
$0010 $6E17 MOVWF main_i_L0, 0
$0012 $0E00 MOVLW 0
$0014 $6E18 MOVWF main_i_L0+1, 0
$0016 $ L_main_0:
$0016 $0E00 MOVLW 0
$0018 $6E00 MOVWF STACK_0, 0
$001A $5018 MOVF main_i_L0+1, 0, 0
$001C $5C00 SUBWF STACK_0, 0, 0
$001E $E102 BNZ L_main_3
$0020 $5017 MOVF main_i_L0, 0, 0
$0022 $080A SUBLW 10
$0024 $ L_main_3:
$0024 $E307 BNC L_main_1
;EXAMPLE.c,23 :: SUM = Sum + i;
$0026 $5017 MOVF main_i_L0, 0, 0
$0028 $2615 ADDWF main_Sum_L0, 1, 0
$002A $5018 MOVF main_i_L0+1, 0, 0
$002C $2216 ADDWFC main_Sum_L0+1, 1, 0
;EXAMPLE.c,24 :: }
$002E $ L_main_2:
;EXAMPLE.c,21 :: for(i=1; i<= 10; i++)
$002E $4A17 INFSNZ main_i_L0, 1, 0
$0030 $2A18 INCF main_i_L0+1, 1, 0
;EXAMPLE.c,24 :: }
$0032 $D7F1 BRA L_main_0
$0034 $ L_main_1:
;EXAMPLE.c,26 :: PORTC = Sum;
$0034 $C015 FF82 MOVFF main_Sum_L0, PORTC
;EXAMPLE.c,27 :: }
$0038 $D7FF BRA $

Figure 5.40: EXAMPLE.ASM

www.newnespress.com

262 Chapter 5

; ASM code generated by mikroVirtualMachine for PIC - V. 6.2.1.0
; Date/Time: 07/07/2007 17:07:12
; Info: http://www.mikroelektronika.co.yu

; ADDRESS OPCODE ASM
; --
$0000 $EF04 F000 GOTO _main
$0008 $ _main:
;EXAMPLE.c,14 :: void main()
;EXAMPLE.c,18 :: TRISC = 0;
$0008 $6A94 CLRF TRISC, 0
;EXAMPLE.c,20 :: Sum = 0;
$000A $6A15 CLRF main_Sum_L0, 0
$000C $6A16 CLRF main_Sum_L0+1, 0
;EXAMPLE.c,21 :: for(i=1; i<= 10; i++)
$000E $0E01 MOVLW 1
$0010 $6E17 MOVWF main_i_L0, 0
$0012 $0E00 MOVLW 0
$0014 $6E18 MOVWF main_i_L0+1, 0
$0016 $ L_main_0:
$0016 $0E00 MOVLW 0
$0018 $6E00 MOVWF STACK_0, 0
$001A $5018 MOVF main_i_L0+1, 0, 0
$001C $5C00 SUBWF STACK_0, 0, 0
$001E $E102 BNZ L_main_3
$0020 $5017 MOVF main_i_L0, 0, 0
$0022 $080A SUBLW 10
$0024 $ L_main_3:
$0024 $E307 BNC L_main_1
;EXAMPLE.c,23 :: SUM = Sum + i;
$0026 $5017 MOVF main_i_L0, 0, 0
$0028 $2615 ADDWF main_Sum_L0, 1, 0
$002A $5018 MOVF main_i_L0+1, 0, 0
$002C $2216 ADDWFC main_Sum_L0+1, 1, 0
;EXAMPLE.c,24 :: }
$002E $ L_main_2:
;EXAMPLE.c,21 :: for(i=1; i<= 10; i++)
$002E $4A17 INFSNZ main_i_L0, 1, 0
$0030 $2A18 INCF main_i_L0+1, 1, 0
;EXAMPLE.c,24 :: }
$0032 $D7F1 BRA L_main_0
$0034 $ L_main_1:
;EXAMPLE.c,26 :: PORTC = Sum;
$0034 $C015 FF82 MOVFF main_Sum_L0, PORTC
;EXAMPLE.c,27 :: }
$0038 $D7FF BRA $

//** Procedures locations **
//ADDRESS PROCEDURE
//--
$0008 main

//** Labels locations **
//ADDRESS LABEL
//--

$0008 _main:
$0016 L_main_0:
$0024 L_main_3:
$002E L_main_2:
$0034 L_main_1:

Figure 5.41: EXAMPLE.LST
(Continued)

www.newnespress.com

//** Variables locations **
//ADDRESS VARIABLE
//--
$0000 STACK_0
$0001 STACK_1
$0002 STACK_2
$0003 STACK_3
$0004 STACK_4
$0005 STACK_5
$0006 STACK_6
$0007 STACK_7
$0008 STACK_8
$0009 STACK_9
$000A STACK_10
$000B STACK_11
$000C STACK_12
$000D STACK_13
$000E STACK_14
$000F STACK_15
$0010 STACK_16
$0011 STACK_17
$0012 STACK_18
$0013 STACK_19
$0014 STACK_20
$0015 main_Sum_L0
$0017 main_i_L0
$0F82 PORTC
$0F94 TRISC
$0FD8 STATUS
$0FD9 FSR2L
$0FDA FSR2H
$0FDB PLUSW2
$0FDC PREINC2
$0FDD POSTDEC2
$0FDE POSTINC2
$0FDF INDF2
$0FE0 BSR
$0FE1 FSR1L
$0FE2 FSR1H
$0FE3 PLUSW1
$0FE4 PREINC1
$0FE5 POSTDEC1
$0FE6 POSTINC1
$0FE7 INDF1
$0FE8 WREG
$0FE9 FSR0L
$0FEA FSR0H
$0FEB PLUSW0
$0FEC PREINC0
$0FED POSTDEC0
$0FEE POSTINC0
$0FEF INDF0
$0FF3 PRODL
$0FF4 PRODH
$0FF5 TABLAT
$0FF6 TBLPTRL
$0FF7 TBLPTRH
$0FF8 TBLPTRU
$0FF9 PCL
$0FFA PCLATH
$0FFB PCLATU
$0FFD TOSL
$0FFE TOSH
$0FFF TOSU

Figure 5.41: (Cont’d)

www.newnespress.com

.HEX file This is the most important output file as it is the one sent to the

programming device to program the microcontroller. Figure 5.42 shows the

EXAMPLE.HEX file.

5.3.3 Using the Simulator

The program developed in Section 5.3.2 is simulated following the steps given

here, using the simulator in software (release mode). That is, no hardware is used in this

simulation.

Example 5.2

Describe the steps for simulating the program developed in Example 5.1. Display

the values of various variables and PORTC during the simulation while

single-stepping the program. What is the final value displayed on PORTC?

Solution 5.2

The steps are as follows:

Step 1 Start the mikroC IDE, making sure the program developed in Example 5.1 is

displayed in the Code Editor window.

Step 2 From the drop-down menu select Debugger -> Select Debugger ->

Software PIC Simulator, as shown in Figure 5.43.

Step 3 From the drop-down menu select Run -> Start Debugger. The debugger

form shown in Figure 5.44 will appear.

Step 4 Select the variables we want to see during the simulation. Assuming we

want to display the values of variables Sum, i, and PORTC:

� Click on Select from variable list and then find and click on the variable

name Sum

:1000000004EF00F0FFFFFFFF946A156A166A010E05
:10001000176E000E186E000E006E1850005C02E1A4
:1000200017500A0807E31750152618501622174ACA
:10003000182AF1D715C082FFFFD7FFFFFFFFFFFF90
:020000040030CA
:0E000000FFF9FFFEFFFFFBFFFFFFFFFFFFFF0B
:00000001FF

Figure 5.42: EXAMPLE.HEX

www.newnespress.com

265PIC18 Development Tools

� Click Add to add this variable to the Watch list

� Repeat these steps for variable i and PORTC

The debugger window should now look like Figure 5.45.

Step 5 We can now single-step the program and see the variables changing.

Press the F8 key on the keyboard. You should see a blue line to move down.

This shows the line where the program is currently executing. Keep pressing

F8 until you are inside the loop and you will see that variables Sum and i have

become 1, as shown in Figure 5.46. Recently changed items appear in red.

Double-clicking an item in the Watch window opens the Edit Value window,

where you can change the value of a variable or register, or display the value

in other bases such as decimal, hexadecimal, binary, or as a floating point or

character.

Step 6 Keep pressing F8 until the program comes out of the for loop and

executes the line that sends data to PORTC. A this point, as shown in Figure 5.47,

i ¼ 11 and Sum ¼ 55.

Step 7 Press F8 again to send the value of variable Sum to PORTC. As shown in

Figure 5.48, in this case PORTC will have the decimal value 55, which is the sum of

numbers from 1 to 10.

This is the end of the simulation. Select from drop-down menu Run -> Stop

Debugger.

In the above simulation example, we single-stepped through the program to the end

and then we could see the final value of PORTC. The next example shows how to set

breakpoints in the program and then execute up to a breakpoint.

Figure 5.43: Selecting the debugger

www.newnespress.com

266 Chapter 5

Figure 5.44: Starting the debugger

www.newnespress.com

267PIC18 Development Tools

Figure 5.45: Selecting variables to be displayed

www.newnespress.com

268 Chapter 5

Figure 5.46: Single-stepping through the program

Figure 5.47: Single-stepping through the program

www.newnespress.com

Example 5.3

Describe the steps involved in simulating the program developed in Example 5.1.

Set a breakpoint at the end of the program and run the debugger up to this

breakpoint. Display the values of various variables and PORTC at this point.

What is the final value displayed on PORTC?

Solution 5.3

The steps are as follows:

Step 1 Start the mikroC IDE, making sure the program developed in Example 5.1 is

displayed in the Code Editor window.

Step 2 From the drop-down menu select Debugger -> Select Debugger ->

Software PIC Simulator.

Figure 5.48: PORTC has the value 55

www.newnespress.com

270 Chapter 5

Step 3 From the drop-down menu select Run -> Start Debugger.

Step 4 Select variables Sum, i, and PORTC from the Watch window as described in

Example 5.2.

Step 5 To set a breakpoint at the end of the program, click the mouse at the last

closing bracket of the program, which is at line 27, and press F5. As shown in

Figure 5.49, you should see a red line at the breakpoint and a little marker in the

left column of the Code Editor window.

Step 6 Now, start the debugger, and press F6 key to run the program. The program

will stop at the breakpoint, displaying variables as shown in Figure 5.48.

This is the end of the simulation. Select from drop-down menu Run -> Stop

Debugger.

To clear a breakpoint, move the cursor over the line where the breakpoint is and then

press F5. To clear all breakpoints in a program, press the SHIFTþCTRLþF5 keys.

To display the breakpoints in a program, press the SHIFTþF4 keys.

The following are some other useful debugger commands:

Step Into [F7] Executes the current instruction and then halts. If the

instruction is a call to a routine, the program enters the routine and halts at

the first instruction.

Figure 5.49: Setting a breakpoint at line 27

www.newnespress.com

271PIC18 Development Tools

Step Over [F8] Executes the current instruction and then halts. If the

instruction is a call to a routine, it skips it and halts at the first instruction

following the call.

Step Out [CTRLþF8] Executes the current instruction and then halts. If the

instruction is within a routine, it executes the instruction and halts at the first

instruction following the call.

Run to Cursor [F4] Executes all instructions between the current instruction

and the cursor position.

Jump to Interrupt [F2] Jumps to the interrupt service routine address (address

0x08 for PIC18 microcontrollers) and executes the procedure located at that

address.

5.3.4 Using the mikroICD In-Circuit Debugger

This section discusses how to use the mikroICD in-circuit debugger (also called

the PICFlash 2 programmer) to debug the program developed in Example 5.1.

First of all, we have to build the hardware and then connect the in-circuit debugger

device. In this example, the hardware is built on a breadboard, and a PICFlash

2 mikroICD in-circuit debugger is used to debug the system. Note that pins RB6

and RB7 are used by the mikroICD and are not available for I/O while mikroICD

is active.

The Circuit Diagram

The project’s circuit diagram is shown in Figure 5.50. The mikroICD in-circuit

debugger is connected to the development circuit using the following pins of the

microcontroller:

� MCLR

� RB6

� RB7

� þ5V

� GND

www.newnespress.com

272 Chapter 5

The mikroICD has two modes of operation. In inactive mode all lines from the

microcontroller used by the debugger device are connected to the development

system. In active mode the MCLR, RB6, and RB7 pins are disconnected from

the development system and used to program the microcontroller. After the

programming, these lines are restored.

The mikroICD debugger device has a 10-way IDC connector and can be connected to

the target system with a 10-way IDC header. Once the development is finished and the

mikroICD debugger is removed, opposite pairs of the IDC header can be connected

with jumpers. Figure 5.51 shows the system built on a breadboard.

Debugging

After building the hardware we are ready to program the microcontroller and test the

system’s operation with the in-circuit debugger. The steps are as follows:

Step 1 Start the mikroC IDE, making sure the program developed in Example 5.1 is

displayed in the Code Editor window.

Figure 5.50: Circuit diagram of the project

www.newnespress.com

273PIC18 Development Tools

Step 2 Click the Edit Project button (Figure 5.52) and set DEBUG_ON as shown in

Figure 5.53.

Step 3 Select ICD Debug in the Project Setup window as shown in Figure 5.54.

Step 4 Click the Build Project icon to compile the program with the debugger.

After a successful compilation you should see the message Success (ICD Build) in

the Message Window.

Figure 5.51: System built on a breadboard

Edit Project
button

Figure 5.52: Edit Project button

www.newnespress.com

274 Chapter 5

Step 5 Make sure the mikroICD debugger device is connected as in Figure 5.50,

and select Tools -> PicFlash Programmer from the drop-down menu to program

the microcontroller.

Step 6 From the drop-down menu select Debugger -> Select Debugger ->

mikroICD Debugger as shown in Figure 5.55.

Figure 5.53: Set the DEBUG_ON

www.newnespress.com

275PIC18 Development Tools

Step 7 From the drop-down menu select Run -> Start Debugger. The debugger

form will pop up and select variables Sum, i, and PORTC as described in

Example 5.2.

Step 8 Single-step through the program by pressing the F8 key. You should

see the values of variables changing. At the end of the program, decimal value

55 will be sent to PORTC, and LEDs 0,1,2,4, and 5 should be turned ON, as

shown in Figure 5.56, corresponding to this number.

Figure 5.54: Select the ICD Debug

Figure 5.55: Selecting the mikroICD debugger

Figure 5.56: Decimal number 55 shown in LEDs

www.newnespress.com

276 Chapter 5

Step 9 Stop the debugger.

In routines that contain delays, the Step Into [F7] and Step Over [F8]

commands can take a long time. Run to Cursor [F4] and breakpoints should

be used instead.

5.3.5 Using a Development Board

It is easy to develop microcontroller-based applications with the help of a development

board. This section explains how to use the development board BIGPIC4, described

earlier in this chapter. The program written in Example 5.1 is compiled and then loaded

to the microcontroller using the on-board mikroICD in-circuit emulator. Then the

program runs and displays the sum of the numbers 1 to 10 on the LEDs connected to

PORTC.

However, before using the development board we need to know how the BIGPIC4 is

organized and how to use the various devices on the board.

BIGPIC4 Development Board

Figure 5.57 shows the BIGPIC4 development board with the functions of various

devices identified with arrows. The board can be powered either from an external

power supply (8- to 16-C AC/DC) or from the USB port of a computer, using a

jumper. In this application, the board is powered from a USB port.

A 2-row by 16-column LCD can be connected in the board’s upper left corner. The

contrast of the LCD can be adjusted with a small potentiometer.

The forty-six LEDs on the board can be connected to the output ports of the

microcontroller, selected by switch S2. Figure 5.58 shows how to select the LEDs,

using PORTC as an example. 1K resistors are used in series with the LEDs to limit

the current. For example, to connect eight LEDs to PORTC we have to set the

switch arm marked PORTC of switch S2 to the ON position.

The forty-six push-button switches on the board can be used to program digital

inputs to the microcontroller. There is also a push-button switch that acts as the

RESET. Jumper J12 determines whether a button press will bring logical 0 or

logical 1 to the microcontroller. When the button is not pressed, the pin state is

determined by jumper J5.

www.newnespress.com

277PIC18 Development Tools

Figure 5.58: LED and push-button switch connections

External
Power
supply

USB

LEDs

Push-button
switches

Graphics
LCD

MMC/SD
slot

RS232
ports PC

keyboard mikroICD

Reset

Processor

Port
connectors

LCD

Contrast

Figure 5.57: BIGPIC4 development board

www.newnespress.com

278 Chapter 5

At the bottom central position, a 128 � 64 pixel graphics LCD can be connected

to the board. The contrast of the LCD can be adjusted by a small potentiometer.

The MMC/SD card slot at the bottom right-hand corner of the board supports

cards up to 2GB storage capacity.

The RESET button is located just above the MMC/SD card slot.

Above the RESET button are two potentiometers for analog-to-digital converter

applications.

All of the microcontroller port pins are available at the connectors situated along

the right-hand side of the board. In the top middle portion of the board are two

RS232 ports and a connection to a PC keyboard.

The board supports both 64-pin and 80-pin microcontrollers. The board comes with

a PIC18F8520 microcontroller connected to the board, operating with a 10MHz crystal.

Further details about the operation of the board can be found in the BIGPIC4

user’s manual.

The steps in developing an application using the BIGPIC4 board are as follows:

Step 1 Double-click the mikroC icon to start the IDE.

Step 2 Create a new project called EXAMPLE2 (see Figure 5.59) and select the

microcontroller type as PIC18F8520, the clock as 10MHz, and device flags as:

� _OSC_HS_1H

� _WDT_OFF_2H

� _LVP_OFF_4L

� _DEBUG_ON_4L

www.newnespress.com

279PIC18 Development Tools

Step 3 Enter the following program into the Code Editor section of the IDE:

/**

EXAMPLE PROGRAM

This program uses the PICBIG4 Development Board. 8 LEDs are connected

To PORTC of the microcontroller which is a PIC18F8520 operating at 10MHz.

This program calculates the sum of integer numbers from 1 to 10

And then displays the sum on PORTC of the microcontroller.

Figure 5.59: Creating a new project

www.newnespress.com

280 Chapter 5

Author: Dogan Ibrahim

File: EXAMPLE2.C

**/
void main()
{

unsigned int Sum,i;
TRISC ¼ 0;

Sum ¼ 0;
for(i¼1; i<¼ 10; iþþ)
{

Sum ¼ Sum þ i;
}

PORTC ¼ Sum;
}

Step 4 Save the program with the name EXAMPLE2 by clicking File -> Save As.

Step 5 Tick option ICD Debug in the Project Setup window. Compile the project by

pressing CTRLþF9 or by clicking the Build Project button.

Step 6 Connect the BIGPIC4 development board to the USB port on the computer.

Configure the development board by routing eight LEDs to PORTC: Set the arm

marked PORTC on switch S2 to the ON position.

Step 7 Select Tools -> PicFlash Programmer from the drop-down menu to

program the microcontroller.

Step 8 Select Debugger -> Select Debugger -> mikroICD Debugger.

Step 9 Start the debugger by clicking Run -> Start Debugger and select variables

Sum, i, and PORTC from the Watch window.

Step 10 Single-step through the program until the end by repeatedly pressing F8. At

the end of the program, the PORTC LEDs will turn ON to display decimal 55 (i.e.,

LEDs 0,1,2,4, and 5 will turn ON).

Step 11 Stop the debugger.

View the EEPROM Window The mikroICD EEPROM window is invoked from the

mikroC IDE drop-down menu when the mikroICD debug mode is selected and

started, and it displays contents of the PIC internal EEPROM memory. To view the

www.newnespress.com

281PIC18 Development Tools

memory, click View -> Debug Windows -> View EEPROM. Figure 5.60 shows an

example EEPROM window display.

View the RAM Window The mikroICD RAM window is invoked from the mikroC

IDE drop-down menu when the mikroICD debug mode is selected and started, and it

displays contents of the PIC internal RAM memory. To view the memory, click View

-> Debug Windows -> View RAM. Figure 5.61 shows an example RAM window

display.

View the Code Window The mikroICD Code window is invoked from the

mikroC IDE drop-down menu when the mikroICD debug mode is selected and

started, and it displays the contents of the PIC internal code memory. To view

Figure 5.60: Display of EEPROM memory

www.newnespress.com

282 Chapter 5

the memory, click View -> Debug Windows -> View Code. Figure 5.62 shows

an example Code window display.

View the Statistics The Statistics window is invoked from the mikroC IDE drop-

down menu and it displays various statistical data about our program. To view the

statistics window, click View -> View Statistics. Figure 5.63 shows an example

Statistics window, which consists of several tabs. The Memory Usage tab displays

the amount of RAM (data memory) and ROM (code memory) used. The Procedures

tabs display information about the size and locations of the procedures. The RAM

and ROM tabs display memory usage in detail.

Figure 5.61: Display of RAM memory

www.newnespress.com

283PIC18 Development Tools

Figure 5.63: Display of Statistics window

Figure 5.62: Display of Code memory

www.newnespress.com

5.4 Summary

This chapter has described the PIC microcontroller software development tools (such as

text editors, assemblers, compilers, and simulators) and hardware development tools

(including development boards and kits, programming devices, in-circuit debuggers, and

in-circuit emulators). The mikroC compiler was used in the examples and projects. The

steps in developing and testing a mikroC-based C program were presented both with and

without a hardware in-circuit debugger, followed by an example of how to use the

BIGPIC4 development board, with the on-board in-circuit debugger enabled.

5.5 Exercises

1. Describe the phases of the microcontroller-based system development cycle.

2. Describe briefly the microcontroller development tools.

3. Explain the advantages and disadvantages of assemblers and compilers.

4. Explain why a simulator can be a useful tool while developing a microcontroller-

based product.

5. Explain in detail what a device programmer is. Give some examples of device

programmers for the PIC18 series of microcontrollers.

6. Describe briefly the differences between in-circuit debuggers and in-circuit

emulators. List the advantages and disadvantages of both debugging tools.

7. Enter the following program into the mikroC IDE and compile the program,

correcting any syntax errors. Then, using the software ICD, simulate the operation

of the program by single-stepping through the code, and observe the values of the

variables during the simulation.

/*¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
A SIMPLE LED PROJECT

This program flashes the 8 LEDs connected to PORTC of a PIC18F452

microcontroller.

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼*/

void main()
{

TRISC ¼ 0; // PORTC is output

www.newnespress.com

285PIC18 Development Tools

do
{

PORTC ¼ 0xFF; // Turn ON LEDs on PORTC
PORTC ¼ 0; // Turn OFF LEDs on PORTC
} while(1); // Endless loop

}

8. Describe the steps in using the mikroICD in-circuit debugger.

9. The following C program contains some deliberately introduced errors. Compile

the program to find and correct the errors.

void main()
{

unsigned char i,j,k
i ¼ 10;
j ¼ i þ 1;

for(i ¼ 0; i < 10; iþþ)
{

Sum ¼ Sum þ i;
jþþ

}
}

}

10. The following C program contains some deliberately introduced errors. Compile

the program to find and correct the errors.

int add(int a, int b)
{

result ¼ a þ b
}

void main()
{

int p,q;
p ¼ 12;
q ¼ 10;
z ¼ add(p, q)
zþþ;
for(i ¼ 0; i < z; iþþ)pþþ

}
}

www.newnespress.com

286 Chapter 5

CHAP T E R 6

Simple PIC18 Projects

In this chapter we will look at the design of simple PIC18 microcontroller-based

projects, with the idea of becoming familiar with basic interfacing techniques and

learning how to use the various microcontroller peripheral registers. We will look

at the design of projects using LEDs, push-button switches, keyboards, LED arrays,

sound devices, and so on, and we will develop programs in C language using the

mikroC compiler. The hardware is designed on a low-cost breadboard, but development

kits such as BIGPIC4 can be used for these projects. We will start with very simple

projects and proceed to more complex ones. It is recommended that the reader

moves through the projects in their given order. The following are provided for

each project:

� Description of the program

� Description of the hardware

� Circuit diagram

� Algorithm description (in PDL)

� Program listing

� Suggestions for further development

The program’s algorithm can be described in a variety of graphic and text-based

methods, some of the common ones being a flow diagram, a structure chart, and

program description language. In this book we are using program description

language (PDL).

www.newnespress.com

6.1 Program Description Language (PDL)

Program description language (PDL) is free-format English-like text which describes

the flow of control in a program. PDL is not a programming language but rather is

a tool which helps the programmer to think about the logic of the program before

the program has been developed. Commonly used PDL keywords are described

as follows.

6.1.1 START-END

Every PDL program description (or subprogram) should begin with a START

keyword and terminate with an END keyword. The keywords in a PDL code should

be highlighted in bold to make the code more clear. It is also a good practice to

indent program statements between PDL keywords in order to enhance the

readability of the code.

Example:
START

.

.
END

6.1.2 Sequencing

For normal sequencing in a program, write the statements as short English text as if you

are describing the program.

Example:
Turn on the LED

Wait 1 second

Turn off the LED

6.1.3 IF-THEN-ELSE-ENDIF

Use IF, THEN, ELSE, and ENDIF keywords to describe the flow of control in a

program.

www.newnespress.com

288 Chapter 6

Example:
IF switch ¼ 1 THEN

Turn on LED 1
ELSE

Turn on LED 2
Start the motor

ENDIF

6.1.4 DO-ENDDO

Use Do and ENDDO keywords to show iteration in the PDL code.

Example:
To create an unconditional loop in a program we can write:

Turn on LED
DO 10 times

Set clock to 1
Wait for 10ms
Set clock to 0

ENDDO

A variation of the DO-ENDDO construct is to use other keywords like DO-FOREVER,

DO-UNTIL, etc. as shown in the following examples.

Example:
To create a conditional loop in a program we can write:

Turn off buzzer
IF switch ¼ 1 THEN

DO UNTIL Port 1 ¼ 1
Turn on LED
Wait for 10ms
Read Port 1

ENDDO
ENDIF

www.newnespress.com

289Simple PIC18 Projects

The following construct can be used when an endless loop is required:

DO FOREVER
Read data from Port 1
Send data to PORT 2
Wait for 1 second

ENDDO

6.1.5 REPEAT-UNTIL

REPEAT-UNTIL is another control construct used in PDL codes. In the following

example the program waits until a switch value is equal to 1.

Example:

REPEAT
Turn on buzzer
Read switch value

UNTIL switch ¼ 1

Notice that the REPEAT-UNTIL loop is always executed at least once, and more than

once if the condition at the end of the loop is not met.

PROJECT 6.1—Chasing LEDs

Project Description

In this project eight LEDs are connected to PORTC of a PIC18F452-type microcontroller,

and the microcontroller is operated from a 4MHz resonator. When power is applied to

the microcontroller (or when the microcontroller is reset), the LEDs turn ON alternately

in an anticlockwise manner where only one LED is ON at any time. There is a one-second

delay between outputs so the LEDs can be seen turning ON and OFF.

An LED can be connected to a microcontroller output port in two different modes:

current sinking and current sourcing.

Current Sinking Mode

As shown in Figure 6.1, in current sinking mode the anode leg of the LED is connected

to the þ5V supply, and the cathode leg is connected to the microcontroller output port

through a current limiting resistor.

www.newnespress.com

290 Chapter 6

The voltage drop across an LED varies between 1.4V and 2.5V, with a typical

value of 2V. The brightness of the LED depends on the current through the LED,

and this current can vary between 8 and 16mA, with a typical value of 10mA.

The LED is turned ON when the output of the microcontroller is at logic 0 so the

current flows through the LED. Assuming the microcontroller output voltage is about

0.4V when the output is low, we can calculate the value of the required resistor as

follows:

R ¼ VS � VLED � VL

ILED
ð6:1Þ

where

VS is the supply voltage (5V)

VLED is the voltage drop across the LED (2V)

VL is the maximum output voltage when the output port is low (0.4V)

ILED is the current through the LED (10mA)

Substituting the values into Equation (6.1) we get,

R ¼ 5 � 2 � 0:4

10
¼ 260 ohm

The nearest physical resistor is 270 ohms.

Figure 6.1: LED connected in current sinking mode

www.newnespress.com

291Simple PIC18 Projects

Current Sourcing Mode

As shown in Figure 6.2, in current sourcing mode the anode leg of the LED is

connected to the microcontroller output port and the cathode leg is connected to the

ground through a current limiting resistor.

In this mode the LED is turned ON when the microcontroller output port is at logic 1

(i.e., þ5V). In practice, the output voltage is about 4.85V and the value of the resistor

can be determined as:

R ¼ VO � VLED

ILED
ð6:2Þ

where

VO is the output voltage of the microcontroller port when at logic 1 (þ4.85V).

Thus, the value of the required resistor is:

R ¼ 4:85 � 2

10
¼ 285 ohm

The nearest physical resistor is 290 ohm.

Project Hardware

The circuit diagram of the project is shown in Figure 6.3. LEDs are connected to

PORTC in current sourcing mode with eight 290-ohm resistors. A 4MHz resonator is

connected between the OSC1 and OSC2 pins. Also, an external reset push button is

connected to the MCLR input to reset the microcontroller when required.

Figure 6.2: LED connected in current sourcing mode

www.newnespress.com

292 Chapter 6

Project PDL

The PDL of this project is very simple and is given in Figure 6.4.

Figure 6.3: Circuit diagram of the project

START

Initialise J = 1
DO FOREVER

Set PORTC = J
Shift left J by 1 digit
IF J = 0 THEN

J = 1
ENDIF
Wait 1 second

ENDDO
END

Configure PORTC pins as output

Figure 6.4: PDL of the project

www.newnespress.com

293Simple PIC18 Projects

Project Program

The program is named as LED1.C, and the program listing is given in Figure 6.5. At the

beginning of the program PORTC pins are configured as outputs by setting TRISC ¼ 0.

Then an endless for loop is formed, and the LEDs are turned ON alternately in an

anticlockwise manner to create a chasing effect. The program checks continuously so

that when LED 7 is turned ON, the next LED to be turned ON is LED 0.

This program can be compiled using the mikroC compiler. Project settings should

be configured to 4MHz clock, XT crystal mode, and WDT OFF. The HEX file

(LED1.HEX) should be loaded to the PIC18F452 microcontroller using either an

in-circuit debugger or a programming device.

CHASING LEDS

Author: Dogan Ibrahim
Date: July 2007
File: LED1.C

/***

============

In this project 8 LEDs are connected to PORTC of a PIC18F452 microcontroller
and the microcontroller is operated from a 4MHz resonator. The program turns on
the LEDs in an anti-clockwise manner with one second delay between each output.
The net result is that the LEDs seem to be chasing each other.

***/

void main()
{
 unsigned char J = 1;

 TRISC = 0;
 for(;;) // Endless loop
 {
 PORTC = J; // Send J to PORTC
 Delay_ms(1000); // Delay 1 second
 J = J << 1; // Shift left J
 if(J == 0) J = 1; // If last LED, move to first LED
 }
}

Figure 6.5: Program listing

www.newnespress.com

294 Chapter 6

Further Development

The project can be modified such that the LEDs chase each other in both directions. For

example, if the LEDs are moving in an anticlockwise direction, the direction can be

changed so that when LED RB7 is ON the next LED to turn ON is RB6, when RB6 is

ON the next is RB5, and so on.

PROJECT 6.2—LED Dice

Project Description

This is a simple dice project based on LEDs, a push-button switch, and a PIC18F452

microcontroller operating with a 4MHz resonator. The block diagram of the project is

shown in Figure 6.6.

As shown in Figure 6.7, the LEDs are organized such that when they turn ON, they

indicate numbers as on a real dice. Operation of the project is as follows: The LEDs are

all OFF to indicate that the system is ready to generate a new number. Pressing the

switch generates a random number between 1 and 6 which is displayed on the LEDs for

3 seconds. After 3 seconds the LEDs turn OFF again.

PIC18F452
Push-button
switch

DICE

Figure 6.6: Block diagram of the project

1 2 3 4 5 6

Figure 6.7: LED dice

www.newnespress.com

295Simple PIC18 Projects

Project Hardware

The circuit diagram of the project is shown in Figure 6.8. Seven LEDs representing the

faces of a dice are connected to PORTC of a PIC18F452 microcontroller in current

sourcing mode using 290-ohm current limiting resistors. A push-button switch is

connected to bit 0 of PORTB (RB0) using a pull-up resistor. The microcontroller is

operated from a 4MHz resonator connected between pins OSC1 and OSC2. The

microcontroller is powered from a þ9V battery, and a 78L05-type voltage regulator IC

is used to obtain the þ5V supply required for the microcontroller.

Project PDL

The operation of the project is described in PDL in Figure 6.9. At the beginning of the

program PORTC pins are configured as outputs and bit 0 of PORTB (RB0) is configured

as input. The program then executes in a loop continuously and increments a variable

between 1 and 6. The state of the push-button switch is checked and when the switch

is pressed (switch output at logic 0), the current number is sent to the LEDs. A simple array

is used to find out the LEDs to be turned ON corresponding to the dice number.

Figure 6.8: Circuit diagram of the project

www.newnespress.com

296 Chapter 6

Table 6.1 gives the relationship between a dice number and the corresponding LEDs to

be turned ON to imitate the faces of a real dice. For example, to display number 1 (i.e.,

only the middle LED is ON), we have to turn on D4. Similarly, to display number 4, the

LEDs to turn ON are D1, D3, D5, and D7.

The relationship between the required number and the data to be sent to PORTC to turn

on the correct LEDs is given in Table 6.2. For example, to display dice number 2, we

have to send hexadecimal 0�22 to PORTC. Similarly, to display number 5, we have to

send hexadecimal 0�5D to PORTC, and so on.

START
 Create DICE table
 Configure PORTC as outputs
 Configure RB0 as input
 Set J = 1
 DO FOREVER
 IF button pressed THEN
 Get LED pattern from DICE table
 Turn ON required LEDs
 Wait 3 seconds
 Set J = 0
 Turn OFF all LEDs
 ENDIF
 Increment J
 IF J = 7 THEN
 Set J = 1
 ENDIF
 ENDDO
END

Figure 6.9: PDL of the project

Table 6.1: Dice number and LEDs to be turned ON

Required number LEDs to be turned on

1 D4

2 D2, D6

3 D2, D4, D6

4 D1, D3, D5, D7

5 D1, D3, D4, D5, D7

6 D1, D2, D3, D5, D6, D7

www.newnespress.com

297Simple PIC18 Projects

Project Program

The program is called LED2.C, and the program listing is given in Figure 6.10. At the

beginning of the program Switch is defined as bit 0 of PORTB, and Pressed is defined

as 0. The relationships between the dice numbers and the LEDs to be turned on are

stored in an array called DICE. Variable J is used as the dice number. Variable Pattern

is the data sent to the LEDs. Program then enters an endless for loop where the value of

variable J is incremented very fast between 1 and 6. When the push-button switch is

pressed, the LED pattern corresponding to the current value of J is read from the array

and sent to the LEDs. The LEDs remain in this state for 3 seconds (using function

Delay_ms with the argument set to 3000ms), after which they all turn OFF. The system

is then ready to generate a new dice number.

Using a Pseudorandom Number Generator

In the preceding project the value of variable J changes very fast among the numbers

between 1 and 6, so we can say that the numbers generated are random (i.e., new

numbers do not depend on the previous numbers).

A pseudorandom number generator function can also be used to generate the dice

numbers. The modified program listing is shown in Figure 6.11. In this program a

function called Number generates the dice numbers. The function receives the upper

limit of the numbers to be generated (6 in this example) and also a seed value which

Table 6.2: Required number and PORTC data

Required number PORTB data (Hex)

1 0�08

2 0�22

3 0�2A

4 0�55

5 0�5D

6 0�77

www.newnespress.com

298 Chapter 6

/**

In this project 7 LEDs are connected to PORTC of a PIC18F452 microcontroller
and the microcontroller is operated from a 4MHz resonator. The LEDs are organized
as the faces of a real dice. When a push-button switch connected to RB0 is pressed a
dice pattern is displayed on the LEDs. The display remains in this state for 3 seconds
and after this period the LEDs all turn OFF to indicate that the system is ready for the
button to be pressed again.

Author: Dogan Ibrahim
Date: July 2007
File: LED2.C
***/

#define Switch PORTB.F0
#define Pressed 0

void main()
{
 unsigned char J = 1;
 unsigned char Pattern;
 unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

 TRISC = 0; // PORTC outputs
 TRISB = 1; // RB0 input
 PORTC = 0; // Turn OFF all LEDs

 for(;;) // Endless loop
 {
 if(Switch == Pressed) // Is switch pressed ?
 {
 Pattern = DICE[J]; // Get LED pattern
 PORTC = Pattern; // Turn on LEDs
 Delay_ms(3000); // Delay 3 second
 PORTC = 0; // Turn OFF all LEDs
 J = 0; // Initialise J
 }
 J++; // Increment J
 if(J == 7) J = 1; // Back to 1 if > 6
 }
}

SIMPLE DICE
===========

Figure 6.10: Program listing

www.newnespress.com

299Simple PIC18 Projects

/**

In this project 7 LEDs are connected to PORTC of a PIC18F452 microcontroller
and the microcontroller is operated from a 4MHz resonator. The LEDs are organized
as the faces of a real dice. When a push-button switch connected to RB0 is pressed a
dice pattern is displayed on the LEDs. The display remains in this state for 3 seconds
and after this period the LEDs all turn OFF to indicate that the system is ready for the
button to be pressed again.

In this program a pseudorandom number generator function is
used to generate the dice numbers between 1 and 6.

Author: Dogan Ibrahim
Date: July 2007
File: LED3.C
***/

#define Switch PORTB.F0
#define Pressed 0

//
// This function generates a pseudo random integer number
// between 1 and Lim
//
unsigned char Number(int Lim, int Y)
{
 unsigned char Result;
 static unsigned int Y;

 Y = (Y * 32719 + 3) % 32749;
 Result = ((Y % Lim) + 1);
 return Result;
}

//
// Start of MAIN program
//
void main()
{
 unsigned char J,Pattern,Seed = 1;
 unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

 TRISC = 0; // PORTC outputs
 TRISB = 1; // RB0 input
 PORTC = 0; // Turn OFF all LEDs

 for(;;) // Endless loop

SIMPLE DICE
===========

Figure 6.11: Dice program using a pseudorandom number generator

www.newnespress.com

300 Chapter 6

defines the number set to be generated. In this example, the seed is set to 1. Every time

the function is called, a number between 1 and 6 is generated.

The operation of the program is basically same as in Figure 6.10. When the push-button

switch is pressed, function Number is called to generate a new dice number between

1 and 6, and this number is used as an index in array DICE in order to find the bit

pattern to be sent to the LEDs.

PROJECT 6.3—Two-Dice Project

Project Description

This project is similar to Project 2, but here a pair of dice are used—as in many dice

games such as backgammon—instead of a single dice.

The circuit shown in Figure 6.8 can be modified by adding another set of seven LEDs

for the second dice. For example, the first set of LEDs can be driven from PORTC, the

second set from PORTD, and the push-button switch can be connected to RB0 as

before. Such a design requires fourteen output ports just for the LEDs. Later on we will

see how the LEDs can be combined in order to reduce the input/output requirements.

Figure 6.12 shows the block diagram of the project.

Project Hardware

The circuit diagram of the project is shown in Figure 6.13. The circuit is basically

same as in Figure 6.8, with the addition of another set of LEDs connected

to PORTD.

{
 if(Switch == Pressed) // Is switch pressed ?
 {
 J = Number(6,seed); // Generate a number between 1 and 6
 Pattern = DICE[J]; // Get LED pattern
 PORTC = Pattern; // Turn on LEDs
 Delay_ms(3000); // Delay 3 second
 PORTC = 0; // Turn OFF all LEDs
 }
 }
}

Figure 6.11: (Cont’d)

www.newnespress.com

301Simple PIC18 Projects

Project PDL

The operation of the project is very similar to that for Project 2. Figure 6.14 shows the

PDL for this project. At the beginning of the program the PORTC and PORTD pins

are configured as outputs, and bit 0 of PORTB (RB0) is configured as input. The

program then executes in a loop continuously and checks the state of the push-button

switch. When the switch is pressed, two pseudorandom numbers between 1 and 6 are

Figure 6.13: Circuit diagram of the project

PIC18F452
Push-button
switch

DICE

Figure 6.12: Block diagram of the project

www.newnespress.com

302 Chapter 6

generated, and these numbers are sent to PORTC and PORTD. The LEDs remain at

this state for 3 seconds, after which all the LEDs are turned OFF to indicate that the

push-button switch can be pressed again for the next pair of numbers.

Project Program

The program is called LED4.C, and the program listing is given in Figure 6.15. At

the beginning of the program Switch is defined as bit 0 of PORTB, and Pressed is

defined as 0. The relationships between the dice numbers and the LEDs to be turned

on are stored in an array called DICE, as in Project 2. Variable Pattern is the data sent

to the LEDs. Program enters an endless for loop where the state of the push-button

switch is checked continuously. When the switch is pressed, two random numbers

are generated by calling function Number. The bit patterns to be sent to the LEDs

are then determined and sent to PORTC and PORTD. The program then repeats

inside the endless loop, checking the state of the push-button switch.

PROJECT 6.4—Two-Dice Project Using Fewer I/O Pins

Project Description

This project is similar to Project 3, but here LEDs are shared, which uses fewer input/

output pins.

 START
 Create DICE table
 Configure PORTC as outputs
 Configure PORTD as outputs
 Configure RB0 as input
 DO FOREVER
 IF button pressed THEN
 Get a random number between 1 and 6
 Find bit pattern
 Turn ON LEDs on PORTC
 Get second random number between 1 and 6
 Find bit pattern
 Turn on LEDs on PORTD
 Wait 3 seconds
 Turn OFF all LEDs
 ENDIF
 ENDDO
 END

Figure 6.14: PDL of the project

www.newnespress.com

303Simple PIC18 Projects

/∗∗∗
 TWO DICE
 ========

In this project 7 LEDs are connected to PORTC of a PIC18F452 microcontroller and
7 LEDs to PORTD. The microcontroller is operated from a 4MHz resonator.
The LEDs are organized as the faces of a real dice. When a push-button switch
connected to RB0 is pressed a dice pattern is displayed on the LEDs. The display
remains in this state for 3 seconds and after this period the LEDs all turn OFF to
indicate that the system is ready for the button to be pressed again.

In this program a pseudorandom number generator function is
used to generate the dice numbers between 1 and 6.

Author: Dogan Ibrahim
Date: July 2007
File: LED4.C
∗∗∗/

#define Switch PORTB.F0
#define Pressed 0

//
// This function generates a pseudo random integer number
// between 1 and Lim
//
unsigned char Number(int Lim, int Y)
{
 unsigned char Result;
 static unsigned int Y;

 Y = (Y * 32719 + 3) % 32749;
 Result = ((Y % Lim) + 1);
 return Result;
}

//
// Start of MAIN program
//
void main()
{
 unsigned char J,Pattern,Seed = 1;
 unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

 TRISC = 0; // PORTC are outputs
 TRISD = 0; // PORTD are outputs
 TRISB = 1; // RB0 input
 PORTC = 0; // Turn OFF all LEDs
 PORTD = 0; // Turn OFF all LEDs

Figure 6.15: Program listing

www.newnespress.com

304 Chapter 6

The LEDs in Table 6.1 can be grouped as shown in Table 6.3. Looking at this table we

can say that:

� D4 can appear on its own

� D2 and D6 are always together

� D1 and D3 are always together

� D5 and D7 are always together

Thus, we can drive D4 on its own and then drive the D2,D6 pair together in series, the

D1,D3 pair together in series, and also the D5,D7 pair together in series. (Actually, we

Table 6.3: Grouping the LEDs

Required number LEDs to be turned on

1 D4

2 D2 D6

3 D2 D6 D4

4 D1 D3 D5 D7

5 D1 D3 D5 D7 D4

6 D2 D6 D1 D3 D5 D7

 for(;;) // Endless loop
 {
 if(Switch == Pressed) // Is switch pressed ?
 {
 J = Number(6,seed); // Generate first dice number
 Pattern = DICE[J]; // Get LED pattern
 PORTC = Pattern; // Turn on LEDs for first dice
 J = Number(6,seed); // Generate second dice number
 Pattern = DICE[J]; // Get LED pattern
 PORTD = Pattern; // Turn on LEDs for second dice
 Delay_ms(3000); // Delay 3 seconds
 PORTC = 0; // Turn OFF all LEDs
 PORTD = 0; // Turn OFF all LEDS
 }
 }
}

Figure 6.15: (Cont’d)

www.newnespress.com

305Simple PIC18 Projects

could share D1,D3,D5,D7 but this would require 8 volts to drive if the LEDs are

connected in series. Connecting them in parallel would call for even more current, and a

driver IC would be required.) Altogether, four lines are needed to drive the seven LEDs

of each dice. Thus, a pair of dice can easily be driven from an 8-bit output port.

Project Hardware

The circuit diagram of the project is shown in Figure 6.16. PORTC of a PIC18F452

microcontroller is used to drive the LEDs as follows:

� RC0 drives D2,D6 of the first dice

� RC1 drives D1,D3 of the first dice

� RC2 drives D5,D7 of the first dice

� RC3 drives D4 of the first dice

� RC4 drives D2,D6 of the second dice

Figure 6.16: Circuit diagram of the project

www.newnespress.com

306 Chapter 6

� RC5 drives D1,D3 of the second dice

� RC6 drives D5,D7 of the second dice

� RC7 drives D4 of the second dice

Since two LEDs are being driven on some outputs, we can calculate the required value

of the current limiting resistors. Assuming that the voltage drop across each LED

is 2V, the current through the LED is 10mA, and the output high voltage of the

microcontroller is 4.85V, the required resistors are:

R ¼ 4:85 � 2 � 2

10
¼ 85 ohms

We will choose 100-ohm resistors.

We now need to find the relationship between the dice numbers and the bit pattern to be

sent to the LEDs for each dice. Table 6.4 shows the relationship between the first

dice numbers and the bit pattern to be sent to port pins RC0-RC3. Similarly, Table 6.5

shows the relationship between the second dice numbers and the bit pattern to be

sent to port pins RC4-RC7.

We can now find the 8-bit number to be sent to PORTC to display both dice numbers as

follows:

� Get the first number from the number generator, call this P

� Index the DICE table to find the bit pattern for low nibble (i.e., L ¼ DICE[P])

� Get the second number from the number generator, call this P

Table 6.4: First dice bit patterns

Dice number RC3 RC2 RC1 RC0 Hex value

1 1 0 0 0 8

2 0 0 0 1 1

3 1 0 0 1 9

4 0 1 1 0 6

5 1 1 1 0 E

6 0 1 1 1 7

www.newnespress.com

307Simple PIC18 Projects

� Index the DICE table to find the bit pattern for high nibble (i.e., U ¼ DICE[P])

� Multiply high nibble by 16 and add low nibble to find the number to be sent

to PORTC (i.e., R ¼ 16*U þ L), where R is the 8-bit number to be sent to

PORTC to display both dice values.

Project PDL

The operation of this project is very similar to that of Project 2. Figure 6.17 shows

the PDL of the project. At the beginning of the program the PORTC pins are

Table 6.5: Second dice bit patterns

Dice number RC7 RC6 RC5 RC4 Hex value

1 1 0 0 0 8

2 0 0 0 1 1

3 1 0 0 1 9

4 0 1 1 0 6

5 1 1 1 0 E

6 0 1 1 1 7

 START
 Create DICE table
 Configure PORTC as outputs
 Configure RB0 as input
 DO FOREVER
 IF button pressed THEN
 Get a random number between 1 and 6
 Find low nibble bit pattern
 Get second random number between 1 and 6
 High high nibble bit pattern
 Calculate data to be sent to PORTC
 Wait 3 seconds
 Turn OFF all LEDs
 ENDIF
 ENDDO
 END

Figure 6.17: PDL of the project

www.newnespress.com

308 Chapter 6

configured as outputs, and bit 0 of PORTB (RB0) is configured as input. The program

then executes in a loop continuously and checks the state of the push-button switch.

When the switch is pressed, two pseudorandom numbers between 1 and 6 are generated,

and the bit pattern to be sent to PORTC is found by the method just described. This bit

pattern is then sent to PORTC to display both dice numbers at the same time. The

display shows the dice numbers for 3 seconds, and then all the LEDs turn OFF to

indicate that the system is waiting for the push-button to be pressed again to display

the next set of numbers.

Project Program

The program is called LED5.C, and the program listing is given in Figure 6.18.

At the beginning of the program Switch is defined as bit 0 of PORTB, and Pressed

is defined as 0. The relationships between the dice numbers and the LEDs to be

turned on are stored in an array called DICE as in Project 2. Variable Pattern is the

data sent to the LEDs. The program enters an endless for loop where the state of

the push-button switch is checked continuously. When the switch is pressed, two

random numbers are generated by calling function Number. Variables L and U store

the lower and higher nibbles of the bit pattern to be sent to PORTC. The bit pattern

to be sent to PORTC is then determined using the method described in the

Project Hardware section and stored in variable R. This bit pattern is then sent to

PORTC to display both dice numbers at the same time. The dice numbers are

displayed for 3 seconds, after which the LEDs are turned OFF to indicate that the

system is ready.

Modifying the Program

The program given in Figure 6.18 can made more efficient by combining the two dice

nibbles into a single table value as described here.

There are thirty-six possible combinations of the two dice values. Referring to

Table 6.4, Table 6.5, and Figure 6.16, we can create Table 6.6 to show all the possible

two-dice values and the corresponding numbers to be sent to PORTC.

The modified program (program name LED6.C) is given in Figure 6.19. In this program

array DICE contains the thirty-six possible dice values. The program enters an endless

www.newnespress.com

309Simple PIC18 Projects

/∗∗∗

In this project LEDs are connected to PORTC of a PIC18F452 microcontroller
and the microcontroller is operated from a 4MHz resonator. The LEDs are
organized as the faces of a real dice. When a push-button switch connected to
RB0 is pressed a dice pattern is displayed on the LEDs. The display remains
in this state for 3 seconds and after this period the LEDs all turn OFF to indicate
that the system is ready for the button to be pressed again.

In this program a pseudorandom number generator function is
used to generate the dice numbers between 1 and 6.

Author: Dogan Ibrahim
Date: July 2007
File: LED5.C
∗∗∗/

#define Switch PORTB.F0
#define Pressed 0

//
// This function generates a pseudo random integer number
// between 1 and Lim
//
unsigned char Number(int Lim, int Y)
{
 unsigned char Result;
 static unsigned int Y;

 Y = (Y * 32719 + 3) % 32749;
 Result = ((Y % Lim) + 1);
 return Result;
}

//
// Start of MAIN program
//
void main()
{
 unsigned char J,L,U,R,Seed = 1;
 unsigned char DICE[] = {0,0x08,0x01,0x09,0x06,0x0E,0x07};

 TRISC = 0; // PORTC are outputs
 TRISB = 1; // RB0 input
 PORTC = 0; // Turn OFF all LEDs

 for(;;) // Endless loop

TWO DICE - USING FEWER I/O PINS
==============================

Figure 6.18: Program listing

www.newnespress.com

310 Chapter 6

{
 if(Switch == Pressed) // Is switch pressed ?
 {
 J = Number(6,seed); // Generate first dice number
 L = DICE[J]; // Get LED pattern
 J = Number(6,seed); // Generate second dice number
 U = DICE[J]; // Get LED pattern
 R = 16*U + L; // Bit pattern to send to PORTC
 PORTC = R; // Turn on LEDs for both dice
 Delay_ms(3000); // Delay 3 seconds
 PORTC = 0; // Turn OFF all LEDs
 }
 }
}

Figure 6.18: (Cont’d)

Table 6.6: Two-dice combinations and the number to be sent to PORTC

Dice numbers PORTC value Dice numbers PORTC value

1,1 0�88 4,1 0�86

1,2 0�18 4,2 0�16

1,3 0�98 4,3 0�96

1,4 0�68 4,4 0�66

1,5 0�E8 4,5 0�E6

1,6 0�78 4,6 0�76

2,1 0�81 5,1 0�8E

2,2 0�11 5,2 0�1E

2,3 0�91 5,3 0�9E

2,4 0�61 5,4 0�6E

2,5 0�E1 5,5 0�EE

2,6 0�71 5,6 0�7E

3,1 0�89 6,1 0�87

3,2 0�19 6,2 0�17

3,3 0�99 6,3 0�97

3,4 0�69 6,4 0�67

3,5 0�E9 6,5 0�E7

3,6 0�79 6,6 0�77

www.newnespress.com

/***

In this project LEDs are connected to PORTC of a PIC18F452 microcontroller
and the microcontroller is operated from a 4MHz resonator. The LEDs are
organized as the faces of a real dice. When a push-button switch connected to
RB0 is pressed a dice pattern is displayed on the LEDs. The display remains in
this state for 3 seconds and after this period the LEDs all turn OFF to indicate
that the system is ready for the button to be pressed again.

In this program a pseudorandom number generator function is
used to generate the dice numbers between 1 and 6.

Author: Dogan Ibrahim
Date: July 2007
File: LED6.C
**/

#define Switch PORTB.F0
#define Pressed 0

//
// Start of MAIN program
//
void main()
{
 unsigned char Pattern, J = 1;
 unsigned char DICE[] = {0,0x88,0x18,0x98,0x68,0xE8,0x78,
 0x81,0x11,0x91,0x61,0xE1,0x71,
 0x89,0x19,0x99,0x69,0xE9,0x79,
 0x86,0x16,0x96,0x66,0xE6,0x76,
 0x8E,0x1E,0x9E,0x6E,0xEE,0x7E,
 0x87,0x17,0x97,0x67,0xE7,0x77};

 TRISC = 0; // PORTC are outputs
 TRISB = 1; // RB0 input
 PORTC = 0; // Turn OFF all LEDs

 for(;;) // Endless loop
 {
 if(Switch == Pressed) // Is switch pressed ?
 {
 Pattern = DICE[J]; // Number to send to PORTC
 PORTC = Pattern; // send to PORTC
 Delay_ms(3000); // 3 seconds delay
 PORTC = 0; // Clear PORTC
 }
 J++; // Increment J
 if(J == 37) J = 1; // If J = 37, reset to 1
 }
}

=============================
TWO DICE - USING FEWER I/O PINS

Figure 6.19: Modified program

www.newnespress.com

312 Chapter 6

for loop, and inside this loop the state of the push-button switch is checked. Also, a

variable is incremented from 1 to 36. When the button is pressed, the value of this

variable is used as an index to array DICE to determine the bit pattern to be sent to

PORTC. As before, the program displays the dice numbers for 3 seconds and then turns

OFF all LEDs to indicate that it is ready.

PROJECT 6.5—7-Segment LED Counter

Project Description

This project describes the design of a 7-segment LED-based counter which counts

from 0 to 9 continuously with a one-second delay between counts. The project

shows how a 7-segment LED can be interfaced and used in a PIC microcontroller

project.

7-segment displays are used frequently in electronic circuits to show numeric or

alphanumeric values. As shown in Figure 6.20, a 7-segment display consists basically of

7 LEDs connected such that the numbers from 0 to 9 and some letters can be displayed.

Segments are identified by the letters from a to g, and Figure 6.21 shows the segment

names of a typical 7-segment display.

Figure 6.20: Some 7-segment displays

www.newnespress.com

313Simple PIC18 Projects

Figure 6.22 shows how the numbers from 0 to 9 are obtained by turning ON different

segments of the display.

7-segment displays are available in two different configurations: common cathode and

common anode. As shown in Figure 6.23, in common cathode configuration, all the

cathodes of all segment LEDs are connected together to the ground. The segments are

turned ON by applying a logic 1 to the required segment LED via current limiting

resistors. In common cathode configuration the 7-segment LED is connected to the

microcontroller in current sourcing mode.

In common anode configuration, the anode terminals of all the LEDs are connected

together as shown in Figure 6.24. This common point is then normally connected to the

f

g

e

d

a

b

c

Figure 6.21: Segment names of a 7-segment display

Figure 6.22: Displaying numbers 0 to 9

www.newnespress.com

314 Chapter 6

supply voltage. A segment is turned ON by connecting its cathode terminal to logic

0 via a current limiting resistor. In common anode configuration the 7-segment LED is

connected to the microcontroller in current sinking mode.

In this project, a Kingbright SA52-11 red common anode 7-segment display is used.

This is a 13mm (0.52 inch) display with ten pins that includes a segment LED for the

decimal point. Table 6.7 shows the pin configuration of this display.

Project Hardware

The circuit diagram of the project is shown in Figure 6.25. A PIC18F452 type

microcontroller is used with a 4MHz resonator. Segments a to g of the display are

connected to PORTC of the microcontroller through 290-ohm current limiting resistors.

Before driving the display, we have to know the relationship between the numbers to be

displayed and the corresponding segments to be turned ON, and this is shown in

Table 6.8. For example, to display number 3 we have to send the hexadecimal number

0�4F to PORTC, which turns ON segments a,b,c,d, and g. Similarly, to display

number 9 we have to send the hexadecimal number 0�6F to PORTC which turns ON

segments a,b,c,d,f, and g.

Figure 6.24: Common anode configuration

Figure 6.23: Common cathode configuration

www.newnespress.com

315Simple PIC18 Projects

Table 6.7: SA52-11 pin configuration

Pin number Segment

1 e

2 d

3 common anode

4 c

5 decimal point

6 b

7 a

8 common anode

9 f

10 g

Figure 6.25: Circuit diagram of the project

www.newnespress.com

316 Chapter 6

Project PDL

The operation of the project is shown in Figure 6.26 with a PDL. At the beginning of

the program an array called SEGMENT is declared and filled with the relationships

between the numbers 0 and 9 and the data to be sent to PORTC. The PORTC pins are

then configured as outputs, and a variable is initialized to 0. The program then enters an

Table 6.8: Displayed number and data sent to PORTC

Number x g f e d c b a PORTC Data

0 0 0 1 1 1 1 1 1 0�3F

1 0 0 0 0 0 1 1 0 0�06

2 0 1 0 1 1 0 1 1 0�5B

3 0 1 0 0 1 1 1 1 0�4F

4 0 1 1 0 0 1 1 0 0�66

5 0 1 1 0 1 1 0 1 0�6D

6 0 1 1 1 1 1 0 1 0�7D

7 0 0 0 0 0 1 1 1 0�07

8 0 1 1 1 1 1 1 1 0�7F

9 0 1 1 0 1 1 1 1 0�6F

x is not used, taken as 0.

START
 Create SEGMENT table
 Configure PORTC as outputs
 Initialize CNT to 0
 DO FOREVER
 Get bit pattern from SEGMENT corresponding to CNT
 Send this bit pattern to PORTC
 Increment CNT between 0 and 9
 Wait 1 second
 ENDDO
END

Figure 6.26: PDL of the project

www.newnespress.com

317Simple PIC18 Projects

endless loop where the variable is incremented between 0 and 9 and the corresponding

bit pattern to turn ON the appropriate segments is sent to PORTC continuously with

a one-second delay between outputs.

Project Program

The program is called SEVEN1.C and the listing is given in Figure 6.27. At the

beginning of the program character variables Pattern and Cnt are declared, and Cnt

is cleared to 0. Then Table 6.8 is implemented using array SEGMENT. After

configuring the PORTC pins as outputs, the program enters an endless loop using

a for statement. Inside the loop the bit pattern corresponding to the contents of Cnt is

/***
 7-SEGMENT DISPLAY
 =================

In this project a common anode 7-segment LED display is connected to PORTC
of a PIC18F452 microcontroller and the microcontroller is operated from a 4MHz
resonator. The program displays numbers 0 to 9 on the display with a one second
delay between each output.

Author: Dogan Ibrahim
Date: July 2007
File: SEVEN1.C
**/

void main()
{
 unsigned char Pattern, Cnt = 0;
 unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,
 0x7D,0x07,0x7F,0x6F};

 TRISC = 0; // PORTC are outputs

 for(;;) // Endless loop
 {
 Pattern = SEGMENT[Cnt]; // Number to send to PORTC
 Pattern = ~Pattern; // Invert bit pattern
 PORTC = Pattern; // Send to PORTC
 Cnt++;
 if(Cnt == 10) Cnt = 0; // Cnt is between 0 and 9
 Delay_ms(1000); // 1 second delay
 }
}

Figure 6.27: Program listing

www.newnespress.com

318 Chapter 6

found and stored in variable Pattern. Because we are using a common anode display,

a segment is turned ON when it is at logic 0 and thus the bit pattern is inverted before

it is sent to PORTC. The value of Cnt is then incremented between 0 and 9, after

which the program waits for a second before repeating the above sequence.

Modified Program

Note that the program can be made more readable if we create a function to display the

required number and then call this function from the main program. Figure 6.28 shows

the modified program (called SEVEN2.C). A function called Display is created with an

argument called no. The function gets the bit pattern from local array SEGMENT

indexed by no, inverts it, and then returns the resulting bit pattern to the calling

program.

PROJECT 6.6—Two-Digit Multiplexed 7-Segment LED

Project Description

This project is similar to Project 6.5, but here multiplexed two digits are used instead of

just one digit and a fixed number. In this project the number 25 is displayed. In

multiplexed LED applications (see Figure 6.29) the LED segments of all the digits are

tied together and the common pins of each digit are turned ON separately by the

microcontroller. When each digit is displayed only for several milliseconds, the eye

cannot tell that the digits are not ON all the time. This way we can multiplex any

number of 7-segment displays together. For example, to display the number 53, we have

to send 5 to the first digit and enable its common pin. After a few milliseconds, number

3 is sent to the second digit and the common point of the second digit is enabled. When

this process is repeated continuously, it appears to the user that both displays are ON

continuously.

Some manufacturers provide multiplexed multidigit displays, such as 2-, 4-, or 8-digit

multiplexed displays, in single packages. The display used in this project is the DC56-

11EWA, which is a red 0.56-inch common-cathode two-digit display having 18 pins

and the pin configuration as shown in Table 6.9. This display can be controlled from the

microcontroller as follows:

� Send the segment bit pattern for digit 1 to segments a to g

� Enable digit 1

www.newnespress.com

319Simple PIC18 Projects

/***
 7-SEGMENT DISPLAY
 ==================

In this project a common anode 7-segment LED display is connected to
PORTC of a PIC18F452 microcontroller and the microcontroller is
operated from a 4MHz resonator. The program displays numbers 0 to 9 on
the display with a one second delay between each output.

In this version of the program a function called "Display" is used to display the
number.

Author: Dogan Ibrahim
Date: July 2007
File: SEVEN2.C
***/

//
// This function displays a number on the 7-segment LED.
// The number is passed in the argument list of the function.
//
unsigned char Display(unsigned char no)
{
 unsigned char Pattern;
 unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,
 0x7D,0x07,0x7F,0x6F};

 Pattern = SEGMENT[no];
 Pattern = ~ Pattern; // Pattern to return
 return (Pattern);
}

//
// Start of MAIN Program
//
void main()
{
 unsigned char Cnt = 0;

 TRISC = 0; // PORTC are outputs

 for(;;) // Endless loop
 {
 PORTC = Display(Cnt); // Send to PORTC
 Cnt++;
 if(Cnt == 10) Cnt = 0; // Cnt is between 0 and 9
 Delay_ms(1000); // 1 second delay
 }
}

Figure 6.28: Modified program listing

www.newnespress.com

320 Chapter 6

Figure 6.29: Two multiplexed 7-segment displays

Table 6.9: Pin configuration of DC56-11EWA dual display

Pin no. Segment

1,5 E

2,6 D

3,8 C

14 Digit 1 enable

17,7 G

15,10 B

16,11 A

18,12 F

13 Digit 2 enable

4 Decimal point 1

9 Decimal point 2

www.newnespress.com

321Simple PIC18 Projects

� Wait for a few milliseconds

� Disable digit 1

� Send the segment bit pattern for digit 2 to segments a to g

� Enable digit 2

� Wait for a few milliseconds

� Disable digit 2

� Repeat these steps continuously

The segment configuration of the DC56-11EWA display is shown in Figure 6.30.

In a multiplexed display application the segment pins of corresponding segments

are connected together. For example, pins 11 and 16 are connected as the

common a segment, pins 15 and 10 are connected as the common b segment,

and so on.

Project Hardware

The block diagram of this project is shown in Figure 6.31. The circuit diagram is given

in Figure 6.32. The segments of the display are connected to PORTC of a PIC18F452-

type microcontroller, operated with a 4MHz resonator. Current limiting resistors are

used on each segment of the display. Each digit is enabled using a BC108-type

transistor switch connected to port pins RB0 and RB1 of the microcontroller. A segment

is turned on when a logic 1 is applied to the base of the corresponding segment

transistor.

Figure 6.30: DC56-11EWA display segment configuration

www.newnespress.com

322 Chapter 6

PORTB

PORTC

Enable 2

Enable 1

PIC18F452

2-digit display

Figure 6.31: Block diagram of the project

Figure 6.32: Circuit diagram of the project

www.newnespress.com

323Simple PIC18 Projects

Project PDL

At the beginning of the program PORTB and PORTC pins are configured as outputs.

The program then enters an endless loop where first of all the Most Significant Digit

(MSD) of the number is calculated, function Display is called to find the bit pattern and

then sent to the display, and digit 1 is enabled. Then, after a small delay, digit 1 is

disabled, the Least Significant Digit (LSD) of the number is calculated, function

Display is called to find the bit pattern and then sent to the display, and digit 2 is

enabled. Then again after a small delay, digit 2 is disabled, and this process repeats

indefinitely. Figure 6.33 shows the PDL of the project.

Project Program

The program is named SEVEN3.C, and the listing is shown in Figure 6.34. DIGIT1 and

DIGIT2 are defined as equal to bit 0 and bit 1 of PORTB respectively. The value to be

displayed (the number 25) is stored in variable Cnt. An endless loop is formed using a

for statement. Inside the loop, the MSD of the number is calculated by dividing the

number by 10. Function Display is then called to find the bit pattern to send to PORTC.

Then digit 1 is enabled by setting DIGIT1 ¼ 1 and the program waits for 10ms. After

this, digit 1 is disabled and the LSD of the number is calculated using the mod operator

(“%”) and sent to PORTC. At the same time, digit 2 is enabled by setting DIGIT2 ¼ 1

and the program waits for 10ms. After this time digit 2 is disabled, and the program

repeats forever.

 START
 Create SEGMENT table
 Configure PORTB as outputs
 Configure PORTC as outputs
 Initialize CNT to 25
 DO FOREVER
 Find MSD digit
 Get bit pattern from SEGMENT
 Enable digit 1
 Wait for a while
 Disable digit 1
 Find LSD digit
 Get bit pattern from SEGMENT
 Enable digit 2
 Wait for a while
 Disable digit 2
 ENDDO
 END

Figure 6.33: PDL of the project

www.newnespress.com

324 Chapter 6

/∗∗∗
 Dual 7-SEGMENT DISPLAY
 ======================

In this project two common cathode 7-segment LED displays are connected to
PORTC of a PIC18F452 microcontroller and the microcontroller is operated
from a 4MHz resonator. Digit 1 (left digit) enable pin is connected to port pin
RB0 and digit 2 (right digit) enable pin is connected to port pin RB1 of the
microcontroller. The program displays number 25 on the displays.

Author: Dogan Ibrahim
Date: July 2007
File: SEVEN3.C
∗∗∗/
#define DIGIT1 PORTB.F0
#define DIGIT2 PORTB.F1

//
// This function finds the bit pattern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the function.
//
unsigned char Display(unsigned char no)
{
 unsigned char Pattern;
 unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,
 0x7D,0x07,0x7F,0x6F};

 Pattern = SEGMENT[no]; // Pattern to return
 return (Pattern);
}

//
// Start of MAIN Program
//
void main()
{
 unsigned char Msd, Lsd, Cnt = 25;

 TRISC = 0; // PORTC are outputs
 TRISB = 0; // RB0, RB1 are outputs

 DIGIT1 = 0; // Disable digit 1
 DIGIT2 = 0; // Disable digit 2

 for(;;) // Endless loop
 {

Figure 6.34: Program listing
(Continued)

www.newnespress.com

325Simple PIC18 Projects

PROJECT 6.7—Two-Digit Multiplexed 7-Segment
LED Counter with Timer Interrupt

Project Description

This project is similar to Project 6 but here the microcontroller’s timer interrupt is used

to refresh the displays. In Project 6 the microcontroller was busy updating the displays

every 10ms and could not perform any other tasks. For example, the program given

in Project 6 cannot be used to make a counter with a one-second delay between

counts, as the displays cannot be updated while the program waits for one second.

In this project a counter is designed to count from 0 to 99, and the display is refreshed

every 5ms inside the timer interrupt service routine. The main program can then

perform other tasks, in this example incrementing the count and waiting for one second

between counts.

In this project Timer 0 is operated in 8-bit mode. The time for an interrupt is given by:

Time ¼ ð4 � clock periodÞ � Prescaler � ð256 � TMR0LÞ
where Prescaler is the selected prescaler value, and TMR0L is the value loaded into

timer register TMR0L to generate timer interrupts every Time period.

In our application the clock frequency is 4MHz, that is, clock period ¼ 0.25ms, and
Time ¼ 5ms. Selecting a prescaler value of 32, the number to be loaded into TMR0L

can be calculated as follows:

 Msd = Cnt / 10; // MSD digit
 PORTC = Display(Msd); // Send to PORTC
 DIGIT1 = 1; // Enable digit 1
 Delay_Ms(10); // Wait a while

 DIGIT1 = 0; // Disable digit 1
 Lsd = Cnt % 10; // LSD digit
 PORTC = Display(Lsd); // Send to PORTC
 DIGIT2 = 1; // Enable digit 2
 Delay_Ms(10); // Wait a while
 DIGIT2 = 0; // Disable digit 2
 }
}

Figure 6.34: (Cont’d)

www.newnespress.com

326 Chapter 6

TMR0L ¼ 256 � Time

4 � clockperiod � prescaler

or

TMR0L ¼ 256 � 5000

4 � 0:25 � 32 ¼ 100

Thus, TMR0L should be loaded with 100. The value to be loaded into TMR0 control

register T0CON can then be found as:

T0CON
1 1 0 0 0 1 0 0

Enable
TMR0 8-bit

mode Internal
clock Low-high

transition

Use
prescaler

1:32
prescaler

Thus, T0CON register should be loaded with hexadecimal 0�C4. The next register

to be configured is the interrupt control register INTCON, where we will disable

priority based interrupts and enable the global interrupts and TMR0 interrupts:

INTCON

1 X 1 0 0 0 X X

Enable
global
interrupts

Enable
TMR0
int.

Disable
INT0
int.

Disable
RB change
int.

Clear
TMR0IF

www.newnespress.com

327Simple PIC18 Projects

Taking the don’t-care entries (X) as 0, the hexadecimal value to be loaded into

register INTCON is 0�A0.

When an interrupt occurs, the program automatically jumps to the interrupt

service routine. Inside this routine we have to reload register TMR0L, reenable

the TMR0 interrupts, and clear the TMR0 interrupt flag bit. Setting INTCON

register to 0�20 reenables the TMR0 interrupts and at the same time clears the

TMR0 interrupt flag.

The operations to be performed can thus be summarized as follows:

In the main program:

� Load TMR0L with 100

� Set T0CON to 0�C4

� Set INTCON to 0�A0

� Increment the counter with 1-second delays

In the interrupt service routine:

� Re-load TMR0L to 100

� Refresh displays

� Set INTCON to 0�20 (reenable TMR0 interrupts and clear timer interrupt

flag)

Project Hardware

The circuit diagram of this project is same as in Figure 6.32 where a dual 7-segment

display is connected to PORTB and PORTC of a PIC18F452 microcontroller.

Project PDL

The PDL of the project is shown in Figure 6.35. The program is in two sections: the

main program and the interrupt service routine. Inside the main program, TMR0 is

configured to generate interrupts every 5ms and the counter is incremented with a one-

second delay. Inside the interrupt service routine, the timer interrupt is reenabled and

the display digits are refreshed alternately every 5ms.

www.newnespress.com

328 Chapter 6

Project Program

The program is called SEVEN4.C, and the program listing is given in Figure 6.36.

At the beginning of the main program PORTB and PORTC are configured as

outputs. Then register T0CON is loaded with 0�C4 to enable the TMR0 and set the

prescaler to 32. TMR0L register is loaded with 100 so that an interrupt is generated

after 5ms. The program then enters an endless loop where the value of Cnt is

incremented every second.

Inside the interrupt service routine, register TMR0L is reloaded, TMR0 interrupts are

reenabled, and the timer interrupt flag is cleared so that further timer interrupts can be

generated. The display digits are then updated alternately. A variable called Flag is used

to determine which digit to update. Function Display is called, as in Project 6, to find

the bit pattern to be sent to PORTC.

Modifying the Program

In Figure 6.36 the display counts as 00 01. . .09 10 11. . .99 00 01. . . (i.e., the first digit

is shown as 0 for numbers less than 10). The program could be modified so the first

MAIN PROGRAM:

 START
 Configure PORTB as outputs
 Configure PORTC as outputs
 Clear variable Cnt to 0
 Configure TMR0 to generate interrupts every 5ms
 DO FOREVER
 Increment Cnt between 0 and 99
 Delay 1 second
 ENDO
 END

INTERRUPT SERVICE ROUTINE:
 START
 Re-configure TMR0
 IF Digit 1 updated THEN
 Update digit 2
 ELSE
 Update digit 1
 END
 END

Figure 6.35: PDL of the project

www.newnespress.com

329Simple PIC18 Projects

/∗∗∗
 Dual 7-SEGMENT DISPLAY COUNTER
 ==============================

In this project two common cathode 7-segment LED displays are connected to
PORTC of a PIC18F452 microcontroller and the microcontroller is operated
from a 4MHz resonator. Digit 1 (left digit) enable pin is connected to port pin RB0
and digit 2 (right digit) enable pin is connected to port pin RB1 of the microcontroller.
The program counts up from 0 to 99 with one second delay between each count.

The display is updated in a timer interrupt service routine at
every 5ms.

Author: Dogan Ibrahim
Date: July 2007
File: SEVEN4.C
∗∗/
#define DIGIT1 PORTB.F0
#define DIGIT2 PORTB.F1

unsigned char Cnt = 0;
unsigned char Flag = 0;

//
// This function finds the bit pattern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the function.
//
unsigned char Display(unsigned char no)
{
 unsigned char Pattern;
 unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,
 0x7D,0x07,0x7F,0x6F};

 Pattern = SEGMENT[no]; // Pattern to return
 return (Pattern);
}

//
// TMR0 timer interrupt service routine. The program jumps to the ISR at
// every 5ms.
//
void interrupt ()
{
 unsigned char Msd, Lsd;
 TMR0L = 100; // Re-load TMR0
 INTCON = 0x20; // Set T0IE and clear T0IF
 Flag = ~ Flag; // Toggle Flag
 if(Flag == 0) // Do digit 1
 {

Figure 6.36: Program of the project

www.newnespress.com

330 Chapter 6

digit is blanked if the number to be displayed is less than 10. The modified program

(called SEVEN5.C) is shown in Figure 6.37. Here, the first digit (MSD) is not enabled

if the number to be displayed is 0.

 DIGIT2 = 0;
 Msd = Cnt / 10; // MSD digit
 PORTC = Display(Msd); // Send to PORTC
 DIGIT1 = 1; // Enable digit 1
 }
 else
 { // Do digit 2
 DIGIT1 = 0; // Disable digit 1
 Lsd = Cnt % 10; // LSD digit
 PORTC = Display(Lsd); // Send to PORTC
 DIGIT2 = 1; // Enable digit 2
 }
}

//
// Start of MAIN Program. configure PORTB and PORTC as outputs.
// In addition, configure TMR0 to interrupt at every 10ms
//
void main()
{
 TRISC = 0; // PORTC are outputs
 TRISB = 0; // RB0, RB1 are outputs

 DIGIT1 = 0; // Disable digit 1
 DIGIT2 = 0; // Disable digit 2
//
// Configure TMR0 timer interrupt
//
 T0CON = 0xC4; // Prescaler = 32
 TMR0L = 100; // Load TMR0L with 100
 INTCON = 0xA0; // Enable TMR0 interrupt
 Delay_ms(1000);

 for(;;) // Endless loop
 {
 Cnt++; // Increment Cnt
 if(Cnt == 100) Cnt = 0; // Count between 0 and 99
 Delay_ms(1000); // Wait 1 second
 }

}

Figure 6.36: (Cont’d)

www.newnespress.com

331Simple PIC18 Projects

/∗∗
 Dual 7-SEGMENT DISPLAY COUNTER
 ==============================

In this project two common cathode 7-segment LED displays are
connected to PORTC of a PIC18F452 microcontroller and the
microcontroller is operated from a 4MHz resonator. Digit 1 (left
digit) enable pin is connected to port pin RB0 and digit 2
(right digit) enable pin is connected to port pin RB1 of the
microcontroller. The program counts up from 0 to 99 with one
second delay between each count.

The display is updated in a timer interrupt service routine at
every 5ms.

In this version of the program the first digit is blanked if the
number is 0.

Author: Dogan Ibrahim
Date: July 2007
File: SEVEN5.C
∗∗/
#define DIGIT1 PORTB.F0
#define DIGIT2 PORTB.F1

unsigned char Cnt = 0;
unsigned char Flag = 0;

//
// This function finds the bit pattern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the function.
//
unsigned char Display(unsigned char no)
{
 unsigned char Pattern;
 unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,
 0x7D,0x07,0x7F,0x6F};

 Pattern = SEGMENT[no]; // Pattern to return
 return (Pattern);
}

//
// TMR0 timer interrupt service routine. The program jumps to the
// ISR at every 5ms.
//
void interrupt ()
{
 unsigned char Msd, Lsd;

Figure 6.37: Modified program

www.newnespress.com

332 Chapter 6

 TMR0L = 100; // Re-load TMR0
 INTCON = 0x20; // Set T0IE and clear T0IF
 Flag = ~ Flag; // Toggle Flag
 if(Flag == 0) // Do digit 1
 {
 DIGIT2 = 0;
 Msd = Cnt / 10; // MSD digit
 if(Msd != 0)
 {
 PORTC = Display(Msd); // Send to PORTC
 DIGIT1 = 1; // Enable digit 1
 }
 }
 else
 { // Do digit 2
 DIGIT1 = 0; // Disable digit 1
 Lsd = Cnt % 10; // LSD digit
 PORTC = Display(Lsd); // Send to PORTC
 DIGIT2 = 1; // Enable digit 2
 }
}

//
// Start of MAIN Program. configure PORTB and PORTC as outputs.
// In addition, configure TMR0 to interrupt at every 10ms
//
void main()
{
 TRISC = 0; // PORTC are outputs
 TRISB = 0; // RB0, RB1 are outputs

 DIGIT1 = 0; // Disable digit 1
 DIGIT2 = 0; // Disable digit 2
//
// Configure TMR0 timer interrupt
//
 T0CON = 0xC4; // Prescaler = 32
 TMR0L = 100; // Load TMR0 with 100
 INTCON = 0xA0; // Enable TMR0 interrupt
 Delay_ms(1000);

 for(;;) // Endless loop
 {
 Cnt++; // Increment Cnt
 if(Cnt == 100) Cnt = 0; // Count between 0 and 99
 Delay_ms(1000); // Wait 1 second
 }

}

Figure 6.37: (Cont’d)

www.newnespress.com

333Simple PIC18 Projects

PROJECT 6.8—Voltmeter with LCD Display

Project Description

In this project a voltmeter with LCD display is designed. The voltmeter

can be used to measure voltages 0–5V. The voltage to be measured is applied

to one of the analog inputs of a PIC18F452-type microcontroller. The

microcontroller reads the analog voltage, converts it into digital, and then

displays it on an LCD.

In microcontroller systems the output of a measured variable is usually

displayed using LEDs, 7-segment displays, or LCD displays. LCDs make it

possible to display alphanumeric or graphical data. Some LCDs have forty or

more character lengths with the capability to display several lines. Other LCD

displays can be used to display graphics images. Some modules offer color

displays, while others incorporate backlighting so they can be viewed in dimly

lit conditions.

There are basically two types of LCDs as far as the interface technique is

concerned: parallel and serial. Parallel LCDs (e.g., Hitachi HD44780) are

connected to a microcontroller by more than one data line and the data is transferred

in parallel form. Both four and eight data lines are commonly used. A four-wire

connection saves I/O pins but is slower since the data is transferred in two stages.

Serial LCDs are connected to the microcontroller by only one data line, and

data is usually sent to the LCD using the standard RS-232 asynchronous data

communication protocol. Serial LCDs are much easier to use, but they cost more

than the parallel ones.

The programming of a parallel LCD is a complex task and requires a good

understanding of the internal operation of the LCD controllers, including the timing

diagrams. Fortunately, the mikroC language provides special library commands for

displaying data on alphanumeric as well as graphic LCDs. All the user has to do is

connect the LCD to the microcontroller, define the LCD connection in the software, and

then send special commands to display data on the LCD.

HD44780 LCD Module

The HD44780 is one of the most popular alphanumeric LCD modules and is used both

in industry and by hobbyists. This module is monochrome and comes in different sizes.

www.newnespress.com

334 Chapter 6

Modules with 8, 16, 20, 24, 32, and 40 columns are available. Depending on the

model chosen, the number of rows may be 1, 2, or 4. The display provides a 14-pin

(or 16-pin) connector to a microcontroller. Table 6.10 gives the pin configuration and

pin functions of a 14-pin LCD module. The following is a summary of the pin

functions:

VSS is the 0V supply or ground. The VDD pin should be connected to the positive

supply. Although the manufacturers specify a 5V DC supply, the modules will usually

work with as low as 3V or as high as 6V.

Pin 3, named VEE, is the contrast control pin. This pin is used to adjust the contrast of

the display and should be connected to a variable voltage supply. A potentiometer is

normally connected between the power supply lines with its wiper arm connected to this

pin so that the contrast can be adjusted.

Table 6.10: Pin configuration of HD44780 LCD module

Pin no. Name Function

1 VSS Ground

2 VDD þ ve supply

3 VEE Contrast

4 RS Register select

5 R/W Read/write

6 E Enable

7 D0 Data bit 0

8 D1 Data bit 1

9 D2 Data bit 2

10 D3 Data bit 3

11 D4 Data bit 4

12 D5 Data bit 5

13 D6 Data bit 6

14 D7 Data bit 7

www.newnespress.com

335Simple PIC18 Projects

Pin 4 is the register select (RS), and when this pin is LOW, data transferred to the

display is treated as commands. When RS is HIGH, character data can be transferred to

and from the module.

Pin 5 is the read/write (R/W) line. This pin is pulled LOW in order to write commands

or character data to the LCD module. When this pin is HIGH, character data or status

information can be read from the module.

Pin 6 is the enable (E) pin, which is used to initiate the transfer of commands or data

between the module and the microcontroller. When writing to the display, data is

transferred only on the HIGH-to-LOW transition of this line. When reading from the

display, data becomes available after the LOW-to-HIGH transition of the enable pin,

and this data remains valid as long as the enable pin is at logic HIGH.

Pins 7 to 14 are the eight data bus lines (D0 to D7). Data can be transferred between

the microcontroller and the LCD module using either a single 8-bit byte or as two

4-bit nibbles. In the latter case, only the upper four data lines (D4 to D7) are used.

The 4-bit mode means that four fewer I/O lines are used to communicate with the

LCD. In this book we are using only an alphanumeric-based LCD and only the 4-bit

interface.

Connecting the LCD

The mikroC compiler assumes by default that the LCD is connected to the

microcontroller as follows:

LCD Microcontroller port

D7 Bit 7 of the port
D6 Bit 6 of the port
D5 Bit 5 of the port
D4 Bit 4 of the port
E Bit 3 of the port
RS Bit 2 of the port

where port is the port name specified using the Lcd_Init statement.

For example, we can use the statement Lcd_Init(&PORTB) if the LCD is connected to

PORTB with the default connection.

www.newnespress.com

336 Chapter 6

It is also possible to connect the LCD differently, using the command Lcd_Config to

define the connection.

Project Hardware

Figure 6.38 shows the block diagram of the project. The microcontroller reads the

analog voltage, converts it to digital, formats it, and then displays it on the LCD.

The circuit diagram of the project is shown in Figure 6.39. The voltage to be measured

(between 0 and 5V) is applied to port AN0 where this port is configured as an analog

PIC18F452 LCD

Input
voltage

Figure 6.38: Block diagram of the project

Figure 6.39: Circuit diagram of the project

www.newnespress.com

337Simple PIC18 Projects

input in software. The LCD is connected to PORTC of the microcontroller as in the

default four-wire connection. A potentiometer is used to adjust the contrast of the

LCD display.

Project PDL

The PDL of the project is shown in Figure 6.40. At the beginning of the program

PORTC is configured as output and PORTA is configured as input. Then the LCD and

the A/D converter are configured. The program then enters an endless loop where

analog input voltage is converted to digital and displayed on the LCD. The process is

repeated every second.

Project Program

The program is called SEVEN6.C, and the program listing is given in Figure 6.41.

At the beginning of the program PORTC is defined as output and PORTA as input.

Then the LCD is configured and the text “VOLTMETER” is displayed on the LCD for

two seconds. The A/D is then configured by setting register ADCON1 to 0�80 so the

A/D result is right-justified, Vref voltage is set to VDD (þ5V), and all PORTA pins are

configured as analog inputs.

The main program loop starts with a for statement. Inside this loop the LCD is

cleared, and analog data is read from channel 0 (pin AN0) using the statement

Adc_Read(0). The converted digital data is stored in variable Vin which is declared

as an unsigned long. The A/D converter is 10-bits wide and thus there are 1024 steps

 START
 Configure PORTC as outputs
 Configure PORTA as input
 Configure the LCD
 Configure the A/D converter
 DO FOREVER
 Read analog data (voltage) from channel 0
 Format the data
 Display the data (voltage)
 Wait one second
 ENDO
 END

Figure 6.40: PDL of the project

www.newnespress.com

338 Chapter 6

/∗∗
 VOLTMETER WITH LCD DISPLAY
 ============================

In this project an LCD is connected to PORTC. Also, input port AN0 is used as
analog input. Voltage to be measured is applied to AN0. The microcontroller
reads the analog voltage, converts into digital, and then displays on the LCD.

Analog input range is 0 to 5V. A PIC18F452 type microcontroller is used in this
project, operated with a 4MHz resonator.

Analog data is read using the Adc_Read built-in function. This function uses the
internal RC clock for A/D timing.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD

 RC7 D7
 RC6 D6
 RC5 D5
 RC4 D4
 RC3 Enable
 RC2 RS

Author: Dogan Ibrahim
Date: July 2007
File: SEVEN6.C
∗∗/

//
// Start of MAIN Program. Configure LCD and A/D converter
//
void main()
{
 unsigned long Vin, mV;
 unsigned char op[12];
 unsigned char i,j,lcd[5];

 TRISC = 0; // PORTC are outputs (LCD)
 TRISA = 0xFF; // PORTA is input

//
// Configure LCD
//
 Lcd_Init(&PORTC); // LCD is connected to PORTC
 Lcd_Cmd(LCD_CLEAR);
 Lcd_Out(1,1,"VOLTMETER");
 Delay_ms(2000);
//

Figure 6.41: Program listing
(Continued)

www.newnespress.com

339Simple PIC18 Projects

(0 to 1023) corresponding to the reference voltage of 5000mV. Each step corresponds to

5000mV/1024 ¼ 4.88mV. Inside the loop, variable Vin is converted into millivolts by

multiplying by 5000 and dividing into 1024. The division is done by shifting right by 10

digits. At this point variable mV contains the converted data in millivolts.

Function LongToStr is called to convert mV into a string in character array op.

LongToStr converts a long variable into a string having a fixed width of eleven

characters. If the resulting string is fewer than eleven characters, the left column of

the data is filled with space characters.

// Configure A/D converter. AN0 is used in this project
//
 ADCON1 = 0x80; // Use AN0 and Vref=+5V
//
// Program loop
//
 for(;;) // Endless loop
 {
 Lcd_Cmd(LCD_CLEAR);
 Vin = Adc_Read(0); // Read from channel 0 (AN0)
 Lcd_Out(1,1,"mV = "); // Display "mV = "
 mV = (Vin * 5000) >> 10; // mv = Vin x 5000 / 1024
 LongToStr(mV,op); // Convert to string in "op"
//
// Remove leading blanks
//
 j=0;
 for(i=0;i<=11;i++)
 {
 if(op[i] != ' ') // If a blank
 {
 lcd[j]=op[i];
 j++;
 }
 }
//
// Display result on LCD
//
 Lcd_Out(1,6,lcd); // Output to LCD
 Delay_ms(1000); // Wait 1 second
 }

}

Figure 6.41: (Cont’d)

www.newnespress.com

340 Chapter 6

The leading blanks are then removed and the data is stored in a variable called lcd.

Function Lcd_Out is called to display the data on the LCD starting from column 5 of

row 1. For example, if the measured voltage is 1267mV, it is displayed on the LCD as:

mV ¼ 1267

A More Accurate Display

The voltage displayed in Figure 6.41 is not very accurate, since integer arithmetic

has been performed in the calculation and the voltage is calculated by multiplying

the A/D output by 5000 and then dividing the result by 1024 using integer division.

Although the multiplication is accurate, the accuracy of the measurement is lost when

the number is divided by 1024. A more accurate result can be obtained by scaling the

number before it is displayed, as follows.

First, multiply the number Vin by a factor to remove the integer division. For example,

since 5000/1024 ¼ 4.88, we can multiply Vin by 488. For the display, we can calculate

the integer part of the result by dividing the number into 100, and then the fractional

part can be calculated as the remainder. The integer part and the fractional part can be

displayed with a decimal point in between. This technique has been implemented in

program SEVEN7.C as shown in Figure 6.42. In this program variables Vdec and Vfrac

store the integer and the fractional parts of the number respectively. The decimal part is

then converted into a string using function LongToStr and leading blanks are removed.

The parts of the fractional number are called ch1 and ch2. These are converted into

characters by adding 48 (i.e., character “0”) and then displayed at the next cursor

positions using the LCD command Lcd_Chr_Cp.

We could also calculate and display more accurate results by using floating point

arithmetic, but since this uses huge amounts of memory it should be avoided if possible.

PROJECT 6.9—Calculator with Keypad and LCD

Project Description

Keypads are small keyboards used to enter numeric or alphanumeric data into

microcontroller systems. Keypads are available in a variety of sizes and styles, from

2 � 2 to 4 � 4 or even bigger.

This project uses a 4 � 4 keypad (shown in Figure 6.43) and an LCD to design a simple

calculator.

www.newnespress.com

341Simple PIC18 Projects

/**
 VOLTMETER WITH LCD DISPLAY
 ============================

In this project an LCD is connected to PORTC. Also, input port
AN0 is used as analog input. Voltage to be measured is applied
to AN0. The microcontroller reads the analog voltage, converts
into digital, and then displays on the LCD.

Analog input range is 0 to 5V. A PIC18F452 type microcontroller
is used in this project, operated with a 4MHz resonator.

Analog data is read using the Adc_Read built-in function. This
function uses the internal RC clock for A/D timing.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD

 RC7 D7
 RC6 D6
 RC5 D5
 RC4 D4
 RC3 Enable
 RC2 RS

This program displays more accurate results than program SEVEN6.C.
The voltage is displayed as follows:

 mV = nnnn.mm

Author: Dogan Ibrahim
Date: July 2007
File: SEVEN7.C
**/

//
// Start of MAIN Program. Configure LCD and A/D converter
//
void main()
{
 unsigned long Vin, mV,Vdec,Vfrac;
 unsigned char op[12];
 unsigned char i,j,lcd[5],ch1,ch2;

 TRISC = 0; // PORTC are outputs (LCD)
 TRISA = 0xFF; // PORTA is input

//
// Configure LCD

Figure 6.42: A more accurate program

www.newnespress.com

342 Chapter 6

//
 Lcd_Init(&PORTC); // LCD is connected to PORTC
 Lcd_Cmd(LCD_CLEAR);
 Lcd_Out(1,1,"VOLTMETER");
 Delay_ms(2000);
//
// Configure A/D converter. AN0 is used in this project
//
 ADCON1 = 0x80; // Use AN0 and Vref=+5V
//
// Program loop
//
 for(;;) // Endless loop
 {
 Lcd_Cmd(LCD_CLEAR);
 Vin = Adc_Read(0); // Read from channel 0 (AN0)
 Lcd_Out(1,1,"mV = "); // Display "mV = "
 Vin = 488*Vin; // Scale up the result
 Vdec = Vin / 100; // Decimal part
 Vfrac = Vin % 100; // Fractional part
 LongToStr(Vdec,op); // Convert Vdec to string in "op"
//
// Remove leading blanks
//
 j=0;
 for(i=0;i<=11;i++)
 {
 if(op[i] != ' ') // If a blank
 {
 lcd[j]=op[i];
 j++;
 }
 }
//
// Display result on LCD
//
 Lcd_Out(1,6,lcd); // Output to LCD
 Lcd_Out_Cp("."); // Display "."
 ch1 = Vfrac / 10; // Calculate fractional part
 ch2 = Vfrac % 10; // Calculate fractional part
 Lcd_Chr_Cp(48+ch1); // Display fractional part
 Lcd_Chr_Cp(48+ch2); // Display fractional part
 Delay_ms(1000); // Wait 1 second
 }

}

Figure 6.42: (Cont’d)

www.newnespress.com

343Simple PIC18 Projects

Figure 6.44 shows the structure of the keypad used in this project which consists of

sixteen switches formed in a 4 � 4 array and named numerals 0–9, Enter, “þ”, “.”, “-”,

“*”, and “/”. Rows and columns of the keypad are connected to PORTB of a

microcontroller which scans the keypad to detect when a switch is pressed. The

operation of the keypad is as follows:

� A logic 1 is applied to the first column via RB0.

� Port pins RB4 to RB7 are read. If the data is nonzero, a switch is pressed. If

RB4 is 1, key 1 is pressed, if RB5 is 1, key 4 is pressed, if RB6 is 1, key 9 is

pressed, and so on.

� A logic 1 is applied to the second column via RB1.

� Again, port pins RB4 to RB7 are read. If the data is nonzero, a switch is pressed.

If RB4 is 1, key 2 is pressed, if RB5 is 1, key 6 is pressed, if RB6 is 1, key 0 is

pressed, and so on.

� This process is repeated for all four columns continuously.

In this project a simple integer calculator is designed. The calculator can add, subtract,

multiply, and divide integer numbers and show the result on the LCD. The operation of

the calculator is as follows: When power is applied to the system, the LCD displays text

Figure 6.43: 4 � 4 keypad

www.newnespress.com

344 Chapter 6

“CALCULATOR” for 2 seconds. Then text “No1:” is displayed in the first row of the

LCD and the user is expected to type the first number and then press the ENTER key.

Then text “No2:” is displayed in the second row of the LCD, where the user enters the

second number and presses the ENTER key. After this, the appropriate operation key

should be pressed. The result is displayed on the LCD for five seconds and then the

LCD is cleared, ready for the next calculation. The example that follows shows how

numbers 12 and 20 can be added:

No1: 12 ENTER
No2: 20 ENTER
Op: þ
Res ¼ 32

In this project the keyboard is labeled as follows:

1 2 3 4
5 6 7 8
9 0 ENTER
þ � X /

One of the keys, between 0 and ENTER, is not used in this project.

Figure 6.44: 4 � 4 keypad structure

www.newnespress.com

345Simple PIC18 Projects

Project Hardware

The block diagram of the project is shown in Figure 6.45. The circuit diagram is given

in Figure 6.46. A PIC18F452 microcontroller with a 4MHz resonator is used in the

project. Columns of the keypad are connected to port pins RB0–RB3 and rows are

connected to port pins RB4–RB7 via pull-down resistors. The LCD is connected to

PORTC in default mode, as in Figure 6.39. An external reset button is also provided to

reset the microcontroller should it be necessary.

Project PDL

The project PDL is shown in Figure 6.47. The program consist of two parts: function

getkeypad and the main program. Function getkeypad receives a key from the keypad.

Inside the main program the two numbers and the required operation are received

from the keypad. The microcontroller performs the required operation and displays

the result on the LCD.

Project Program

The program listing for the program KEYPAD.C is given in Figure 6.48. Each key is

given a numeric value as follows:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

PIC
18F452 LCD

KEYBOARD

Figure 6.45: Block diagram of the project

www.newnespress.com

346 Chapter 6

The program consists of a function called getkeypad, which reads the pressed keys, and

the main program. Variable MyKey stores the key value (0 to 15) pressed, variables Op1

and Op2 store respectively the first and second numbers entered by the user. All these

variables are cleared to zero at the beginning of the program. A while loop is then

formed to read the first number and store in variable Op1. This loop exits when the user

presses the ENTER key. Similarly, the second number is read from the keyboard in a

second while loop. Then the operation to be performed is read and stored in variable

MyKey, and a switch statement is used to perform the required operation and store the

result in variable Calc. The result is converted into a string array using function

LongToStr. The leading blank characters are then removed as in Project 8. The program

Figure 6.46: Circuit diagram of the project

www.newnespress.com

347Simple PIC18 Projects

displays the result on the LCD, waits for five seconds, and then clears the screen and is

ready for the next calculation. This process is repeated forever.

Function getkeypad receives a key from the keypad. We start by sending a 1 to

column 1, and then we check all the rows. When a key is pressed, a logic 1 is detected

in the corresponding row and the program jumps out of the while loop. Then a for loop

is used to find the actual key pressed by the user as a number from 0 to 15.

It is important to realize that when a key is pressed or released, we get what is known as

contact noise, where the key output pulses up and down momentarily, producing a

number of logic 0 and 1 pulses at the output. Switch contact noise is usually removed

either in hardware or by programming in a process called contact debouncing. In

software the simplest way to remove the contact noise is to wait for about 20ms after a

switch key is pressed or switch key is released. In Figure 6.46, contact debouncing is

accomplished in function getkeypad.

Function getkeypad:

 START
 IF a key is pressed
 Get the key code (0 to 15)
 Return the key code
 ENDIF
 END

Main program:

 START
 Configure LCD
 Wait 2 seconds
 DO FOREVER
 Display No1:
 Read first number
 Display No2:
 Read second number
 Display Op:
 Read operation
 Perform operation
 Display result
 Wait 5 seconds
 ENDDO
 END

Figure 6.47: Project PDL

www.newnespress.com

348 Chapter 6

/∗∗

In this project a 4 x 4 keypad is connected to PORTB of a PIC18F452
microcontroller. Also an LCD is connected to PORTC. The project is a
simple calculator which can perform integer arithmetic.

The keys are organized as follows:

 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15

The keys are labeled as follows:

 1 2 3 4
 5 6 7 8
 9 0 Enter
 + − * /

Author: Dogan Ibrahim
Date: July 2007
File: KEYPAD.C
∗∗/
#define MASK 0xF0
#define Enter 11
#define Plus 12
#define Minus 13
#define Multiply 14
#define Divide 15

//
// This function gets a key from the keypad
//
unsigned char getkeypad()
{
 unsigned char i, Key = 0;

 PORTB = 0x01; // Start with column 1
 while((PORTB & MASK) == 0) // While no key pressed
 {
 PORTB = (PORTB << 1); // next column
 Key++; // column number
 if(Key == 4)
 {
 PORTB = 0x01; // Back to column 1
 Key = 0;

CALCULATOR WITH KEYPAD AND LCD
===============================

Figure 6.48: Program listing
(Continued)

www.newnespress.com

349Simple PIC18 Projects

 }
 }
 Delay_Ms(20); // Switch debounce

 for(i = 0x10; i !=0; i <<=1) // Find the key pressed
 {
 if((PORTB & i) != 0)break;
 Key = Key + 4;
 }

 PORTB=0x0F;
 while((PORTB & MASK) != 0); // Wait until key released
 Delay_Ms(20); // Switch debounce

 return (Key); // Return key number
}

//
// Start of MAIN program
//
void main()
{
 unsigned char MyKey, i,j,lcd[5],op[12];
 unsigned long Calc, Op1, Op2;

 TRISC = 0; // PORTC are outputs (LCD)
 TRISB = 0xF0; // RB4-RB7 are inputs

//
// Configure LCD
//
 Lcd_Init(&PORTC); // LCD is connected to PORTC
 Lcd_Cmd(LCD_CLEAR);
 Lcd_Out(1,1,"CALCULATOR"); // Display CALCULATOR
 Delay_ms(2000); // Wait 2 seconds
 Lcd_Cmd(LCD_CLEAR); // Clear display
//
// Program loop
//
 for(;;) // Endless loop
 {
 MyKey = 0;
 Op1 = 0;
 Op2 = 0;

 Lcd_Out(1,1,"No1: "); // Display No1:
 while(1) // Get first no
 {

Figure 6.48: (Cont’d)

www.newnespress.com

350 Chapter 6

 MyKey = getkeypad();
 if(MyKey == Enter)break; // If ENTER pressed
 MyKey++;
 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 Lcd_Chr_Cp(MyKey + '0');
 Op1 = 10*Op1 + MyKey; // First number in Op1
 }

 Lcd_Out(2,1,"No2: "); // Display No2:
 while(1) // Get second no
 {
 MyKey = getkeypad();
 if(MyKey == Enter)break; // If ENTER pressed
 MyKey++;
 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 Lcd_Chr_Cp(MyKey + '0');
 Op2 = 10*Op2 + MyKey; // Second number in Op2
 }

 Lcd_Cmd(LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"Op: "); // Display Op:

 MyKey = getkeypad(); // Get operation
 Lcd_Cmd(LCD_CLEAR);
 Lcd_Out(1,1,"Res="); // Display Res=
 switch(MyKey) // Perform the operation
 {
 case Plus:
 Calc = Op1 + Op2; // If ADD
 break;
 case Minus:
 Calc = Op1 - Op2; // If Subtract
 break;
 case Multiply:
 Calc = Op1 * Op2; // If Multiply
 break;
 case Divide:
 Calc = Op1 / Op2; // If Divide
 break;
 }

 LongToStr(Calc, op); // Convert to string in op
//
// Remove leading blanks
//
 j=0;
 for(i=0;i<=11;i++)
 {
 if(op[i] != ' ') // If a blank
 {

Figure 6.48: (Cont’d)
(Continued)

www.newnespress.com

351Simple PIC18 Projects

Program Using a Built-in Keypad Function

In the program listing in Figure 6.48, a function called getkeypad has been developed to

read a key from the keyboard. The mikroC language has built-in functions called

Keypad_Read and Keypad_Released to read a key from a keypad when a key is pressed

and when a key is released respectively. Figure 6.49 shows a modified program

(KEYPAD2.C) listing using the Keypad_Released function to implement the preceding

calculator project. The circuit diagram is the same as in Figure 6.46.

Before using the Keypad_Released function we have to call the Keypad_Init function to

tell the microcontroller what the keypad is connected to. Keypad_Released detects

when a key is pressed and then released. When released, the function returns a number

between 1 and 16 corresponding to the key pressed. The remaining parts of the program

are the same as in Figure 6.48.

PROJECT 6.10—Serial Communication–Based Calculator

Project Description

Serial communication is a simple means of sending data long distances quickly and

reliably. The most common serial communication method is based on the RS232

standard, in which standard data is sent over a single line from a transmitting device to a

receiving device in bit serial format at a prespecified speed, also known as the baud

rate, or the number of bits sent each second. Typical baud rates are 4800, 9600, 19200,

38400, etc.

RS232 serial communication is a form of asynchronous data transmission where data is

sent character by character. Each character is preceded with a start bit, seven or eight

 lcd[j]=op[i];
 j++;
 }
 }

 Lcd_Out_Cp(lcd); // Display result
 Delay_ms(5000); // Wait 5 seconds
 Lcd_Cmd(LCD_CLEAR);
 }
}

Figure 6.48: (Cont’d)

www.newnespress.com

352 Chapter 6

/∗∗

In this project a 4 x 4 keypad is connected to PORTB of a PIC18F452
microcontroller. Also an LCD is connected to PORTC. The project is a simple
calculator which can perform integer arithmetic.

The keys are labeled as follows:

 1 2 3 4
 5 6 7 8
 9 0 Enter
 + − ∗ /

In this program mikroC built-in functions are used.

Author: Dogan Ibrahim
Date: July 2007
File: KEYPAD2.C
∗∗/

#define Enter 12
#define Plus 13
#define Minus 14
#define Multiply 15
#define Divide 16

//
// Start of MAIN program
//
void main()
{
 unsigned char MyKey, i,j,lcd[5],op[12];
 unsigned long Calc, Op1, Op2;

 TRISC = 0; // PORTC are outputs (LCD)
//
// Configure LCD
//
 Lcd_Init(&PORTC); // LCD is connected to PORTC
 Lcd_Cmd(LCD_CLEAR);
 Lcd_Out(1,1,"CALCULATOR"); // Display CALCULATOR
 Delay_ms(2000);
 Lcd_Cmd(LCD_CLEAR);
//
// Configure KEYPAD
//
 Keypad_Init(&PORTB); // Keypad on PORTB

CALCULATOR WITH KEYPAD AND LCD
===============================

Figure 6.49: Modified program listing
(Continued)

www.newnespress.com

353Simple PIC18 Projects

//
// Program loop
//
 for(;;) // Endless loop
 {
 MyKey = 0;
 Op1 = 0;
 Op2 = 0;

 Lcd_Out(1,1,"No1: "); // Display No1:
 while(1)
 {
 do // Get first number
 MyKey = Keypad_Released();
 while(!MyKey);
 if(MyKey == Enter)break; // If ENTER pressed
 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 Lcd_Chr_Cp(MyKey + '0');
 Op1 = 10*Op1 + MyKey;
 }

 Lcd_Out(2,1,"No2: "); // Display No2:
 while(1) // Get second no
 {
 do
 MyKey = Keypad_Released(); // Get second number
 while(!MyKey);
 if(MyKey == Enter)break; // If ENTER pressed
 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 Lcd_Chr_Cp(MyKey + '0');
 Op2 = 10*Op2 + MyKey;
 }

 Lcd_Cmd(LCD_CLEAR);
 Lcd_Out(1,1,"Op: "); // Display Op:

 do
 MyKey = Keypad_Released(); // Get operation
 while(!MyKey);
 Lcd_Cmd(LCD_CLEAR);
 Lcd_Out(1,1,"Res="); // Display Res=
 switch(MyKey) // Perform the operation
 {
 case Plus:
 Calc = Op1 + Op2; // If ADD
 break;
 case Minus:
 Calc = Op1 - Op2; // If Subtract
 break;
 case Multiply:

Figure 6.49: (Cont’d)

www.newnespress.com

354 Chapter 6

data bits, an optional parity bit, and one or more stop bits. The most common format is

eight data bits, no parity bit, and one stop bit. The least significant data bit is transmitted

first, and the most significant bit is transmitted last.

A logic high is defined at �12V, and a logic 0 is at þ12V. Figure 6.50 shows how

character “A” (ASCII binary pattern 0010 0001) is transmitted over a serial line. The

line is normally idle at �12V. The start bit is first sent by the line going from high to

low. Then eight data bits are sent, starting from the least significant bit. Finally, the stop

bit is sent by raising the line from low to high.

 Calc = Op1 * Op2; // If Multiply
 break;
 case Divide:
 Calc = Op1 / Op2; // If Divide
 break;
 }

 LongToStr(Calc, op); // Convert to string
//
// Remove leading blanks
//
 j=0;
 for(i=0;i<=11;i++)
 {
 if(op[i] != ' ') // If a blank
 {
 lcd[j]=op[i];
 j++;
 }
 }

 Lcd_Out_Cp(lcd); // Display result
 Delay_ms(5000); // Wait 5 seconds
 Lcd_Cmd(LCD_CLEAR);
 }
}

Figure 6.49: (Cont’d)

IDLE

START 0 0 0 0 0 STOP1 1 0

Figure 6.50: Sending character “A” in serial format

www.newnespress.com

355Simple PIC18 Projects

In a serial connection, a minimum of three lines is used for communication: transmit

(TX), receive (RX), and ground (GND). Serial devices are connected to each other

using two types of connectors: 9-way and 25-way. Table 6.11 shows the TX, RX,

and GND pins of each type of connectors. The connectors used in RS232 serial

communication are shown in Figure 6.51.

As just described, RS232 voltage levels are at �12V. However, microcontroller input-

output ports operate at 0 to þ5V voltage levels, so the voltage levels must be translated

before a microcontroller can be connected to a RS232 compatible device. Thus the

output signal from the microcontroller has to be converted to �12V, and the input from

an RS232 device must be converted into 0 to þ5V before it can be connected to a

microcontroller. This voltage translation is normally done with special RS232 voltage

Table 6.11: Minimum required pins for serial communication

9-pin connector

Pin Function

2 Transmit (TX)

3 Receive (RX)

5 Ground (GND)

25-pin connector

Pin Function

2 Transmit (TX)

3 Receive (RX)

7 Ground (GND)

Figure 6.51: RS232 connectors

www.newnespress.com

356 Chapter 6

converter chips. One such popular chip is the MAX232, a dual converter chip having

the pin configuration shown in Figure 6.52. The device requires four external 1mF
capacitors for its operation.

In the PIC18 series of microcontrollers, serial communication can be handled either in

hardware or in software. The hardware option is easy. PIC18 microcontrollers have

built-in USART (universal synchronous asynchronous receiver transmitter) circuits

providing special input-output pins for serial communication. For serial communication

all the data transmission is handled by the USART, but the USART has to be

configured before receiving and transmitting data. With the software option, all the

serial bit timing is handled in software, and any input-output pin can be programmed

and used for serial communication.

In this project a PC is connected to the microcontroller using an RS232 cable. The

project operates as a simple integer calculator where data is sent to the microcontroller

using the PC keyboard and displayed on the PC monitor.

Figure 6.52: MAX232 pin configuration

www.newnespress.com

357Simple PIC18 Projects

A sample calculation is as follows:

CALCULATOR PROGRAM

Enter First Number: 12
Enter Second Number: 2
Enter Operation: þ
Result ¼ 14

Project Hardware

Figure 6.53 shows the block diagram of the project. The circuit diagram is given in

Figure 6.54. This project uses a PIC18F452 microcontroller with a 4MHz resonator,

and the built-in USART is used for serial communication. The serial communication

lines of the microcontroller (RC6 and RC7) are connected to a MAX232 voltage

translator chip and then to the serial input port (COM1) of a PC using a 9-pin

connector.

Project PDL

The PDL of the project is shown in Figure 6.55. The project consists of a main program

and two functions called Newline and Text_To_User. Function Newline sends a

carriage-return and line-feed to the serial port. Function Text_To_User sends a text

message to USART. The main program receives two numbers and the operation to be

performed from the PC keyboard. The numbers are echoed on the PC monitor. The

result of the operation is also displayed on the monitor.

PIC
18F452

PC RS232 cable

Figure 6.53: Block diagram of the project

www.newnespress.com

358 Chapter 6

Project Program

The program listing of the project is shown in Figure 6.56. The program consists of a

main program and two functions called Newline and Text_To_Usart. Function Newline

sends a carriage return and line feed to the USART to move the cursor to the next line.

Function Text_To_Usart sends a text message to the USART.

At the beginning of the program various messages used in the program are defined as

msg1 to msg5. The USART is then initialized to 9600 baud using the mikroC library

routine Usart_Init. Then the heading “CALCULATOR PROGRAM” is displayed on

the PC monitor. The program reads the first number from the keyboard using the library

function Usart_Read. Function Usart_Data_Ready checks when a new data byte is

ready before reading it. Variable Op1 stores the first number. Similarly, another loop is

formed and the second number is read into variable Op2. The program then reads the

operation to be performed (þ � * /). The required operation is performed inside a

switch statement and the result is stored in variable Calc. The program then converts the

result into string format by calling library function LongToStr. Leading blanks are

Figure 6.54: Circuit diagram of the project

www.newnespress.com

359Simple PIC18 Projects

removed from this string, and the final result is stored in character array kbd and sent to

the USART to display on the PC keyboard.

Testing the Program

The program can be tested using a terminal emulator software such as HyperTerminal,

which is distributed free of charge with Windows operating systems. The steps to test

the program follow (these steps assume serial port COM2 is used):

� Connect the RS232 output from the microcontroller to the serial input port of a

PC (e.g., COM2)

Function Newline:

 START
 Send carriage-return to USART
 Send line-feed to USART
 END

Function Text_To_Usart

 START
 Get text from the argument
 Send text to USART
 END

Main program:

 START
 Configure USART to 9600 Baud
 DO FOREVER
 Display “CALCULATOR PROGRAM”
 Display “Enter First Number: ”
 Read first number
 Display “Enter Second Number: ”
 Read second number
 Display “Operation: ”
 Read operation
 Perform operation
 Display “Result= ”
 Display the result
 ENDDO
 END

Figure 6.55: Project PDL

www.newnespress.com

360 Chapter 6

/∗∗∗
 CALCULATOR WITH PC INTERFACE
 ==============================

In this project a PC is connected to a PIC18F452 microcontroller. The project is a
simple integer calculator. User enters the numbers using the PC keyboard. Results are
displayed on the PC monitor.

The following operations can be performed:

 + − ∗ /

This program uses the built in USART of the microcontroller. The USART is
configured to operate with 9600 Baud rate.

The serial TX pin is RC6 and the serial RX pin is RC7.

Author: Dogan Ibrahim
Date: July 2007
File: SERIAL1.C
∗∗∗/

#define Enter 13
#define Plus '+'
#define Minus '−'
#define Multiply '∗'
#define Divide '/'

//
// This function sends carriage-return and line-feed to USART
//
void Newline()
{
 Usart_Write(0x0D); // Send carriage-return
 Usart_Write(0x0A); // Send line-feed
}

//
// This function sends a text to USART
//
void Text_To_Usart(unsigned char ∗m)
{
 unsigned char i;

 i = 0;
 while(m[i] != 0)
 { // Send TEXT to USART
 Usart_Write(m[i]);
 i++;

Figure 6.56: Program listing
(Continued)

www.newnespress.com

361Simple PIC18 Projects

 }
}

//
// Start of MAIN program
//
void main()
{
 unsigned char MyKey, i,j,kbd[5],op[12];
 unsigned long Calc, Op1, Op2,Key;
 unsigned char msg1[] = " CALCULATOR PROGRAM";
 unsigned char msg2[] = " Enter First Number: ";
 unsigned char msg3[]= "Enter Second Nummber: ";
 unsigned char msg4[] = " Enter Operation: ";
 unsigned char msg5[] = " Result = ";
//
// Configure the USART
//
 Usart_Init(9600); // Baud=9600
//
// Program loop
//
 for(;;) // Endless loop
 {
 MyKey = 0;
 Op1 = 0;
 Op2 = 0;

 Newline(); // Send newline
 Newline(); // Send newline
 Text_To_Usart(msg1); // Send TEXT
 Newline(); // Send newline
 Newline(); // Send newline

//
// Get the first number
//
 Text_To_Usart(msg2); // Send TEXT to USART
 do // Get first number
 {
 if(Usart_Data_Ready()) // If a character ready
 {
 MyKey = Usart_Read(); // Get a character
 if(MyKey == Enter)break; // If ENTER key
 Usart_Write(MyKey); // Echo the character
 Key = MyKey - '0';
 Op1 = 10∗Op1 + Key; // First number in Op1
 }
 }while(1);

Figure 6.56: (Cont’d)

www.newnespress.com

362 Chapter 6

 Newline();

//
// Get the second character
//
 Text_To_Usart(msg3); // Send TEXT to USART
 do // Get second number
 {
 if(Usart_Data_Ready())
 {
 MyKey = Usart_Read(); // Get a character
 if(Mykey == Enter)break; // If ENTER key
 Usart_Write(MyKey); // Echo the character
 Key = MyKey - '0';
 Op2 = 10∗Op2 + Key; // Second number in Op2
 }
 }while(1);

 Newline();
//
// Get the operation
//
 Text_To_Usart(msg4);
 do
 {
 if(Usart_Data_Ready())
 {
 MyKey = Usart_Read(); // Get a character
 if(MyKey == Enter)break; // If ENTER key
 Usart_Write(MyKey); // Echo the character
 Key = MyKey;
 }
 }while(1);

//
// Perform the operation
//
 Newline();
 switch(Key) // Calculate
 {
 case Plus:
 Calc = Op1 + Op2; // If ADD
 break;
 case Minus:
 Calc = Op1 - Op2; // If Subtract
 break;
 case Multiply:
 Calc = Op1 ∗ Op2; // If Multiply
 break;

Figure 6.56: (Cont’d)
(Continued)

www.newnespress.com

363Simple PIC18 Projects

� Start HyperTerminal terminal emulation software and give a name to

the session

� Select File -> New connection -> Connect using and select COM2

� Select the baud rate as 9600, data bits as 8, no parity bits, and 1 stop bit

� Reset the microcontroller

An example output from the HyperTerminal screen is shown in Figure 6.57.

Using Software-Based Serial Communication

The preceding example made use of the microcontroller’s USART and thus its special

serial I/O pins. Serial communication can also be handled entirely in software, without

using the USART. In this method, any pin of the microcontroller can be used for serial

communication.

 case Divide:
 Calc = Op1 / Op2; // If Divide
 break;
 }

 LongToStr(Calc, op); // Convert to string
//
// Remove leading blanks
//
 j=0;
 for(i=0;i<=11;i++)
 {
 if(op[i] != ' ') // If a blank
 {
 kbd[j]=op[i];
 j++;
 }
 }

 Text_To_Usart(msg5);
 for(i=0; i<j;i++)Usart_Write(kbd[i]); // Display result

 }
}

Figure 6.56: (Cont’d)

www.newnespress.com

364 Chapter 6

The calculator program given in Project 10 can be reprogrammed using the

mikroC software serial communications library functions known as the Software

Uart Library.

The modified program listing is given in Figure 6.58. The circuit diagram of the project is

same as in Figure 6.54 (i.e., RC6 and RC7 are used for serial TX and RX respectively),

although any other port pins can also be used. At the beginning of the program the serial

I/O port is configured by calling function Soft_Uart_Init. The serial port name, the pins

used for TX and RX, the baud rate, and the mode are specified. The mode tells the

microcontroller whether or not the data is inverted. Setting mode to 1 inverts the data.

When a MAX232 chip is used, the data should be noninverted (i.e., mode ¼ 0).

Serial data is then output using function Soft_Uart_Write. Serial data is input using

function Soft_Uart_Read. As the reading is a nonblocking function, it is necessary to

check whether or not a data byte is available before attempting to read. This is done

using the error argument of the function. The remaining parts of the program are

the same.

Figure 6.57: HyperTerminal screen

www.newnespress.com

365Simple PIC18 Projects

/∗∗
 CALCULATOR WITH PC INTERFACE
 ==============================

In this project a PC is connected to a PIC18F452 microcontroller. The project is a
simple integer calculator. User enters the numbers using the PC keyboard. Results are
displayed on the PC monitor.

The following operations can be performed:

 + − ∗ /

In this program the serial communication is handled in software
and the serial port is configured to operate with 9600 Baud rate.

Port pins RC6 and RC7 are used for serial TX and RX respectively.

Author: Dogan Ibrahim
Date: July 2007
File: SERIAL2.C
∗∗/

#define Enter 13
#define Plus '+'
#define Minus '−'
#define Multiply '∗'
#define Divide '/'

//
// This function sends carriage-return and line-feed to USART
//
void Newline()
{
 Soft_Uart_Write(0x0D); // Send carriage-return
 Soft_Uart_Write(0x0A); // Send line-feed
}

//
// This function sends a text to serial port
//
void Text_To_Usart(unsigned char ∗m)
{
 unsigned char i;

 i = 0;
 while(m[i] != 0)
 { // Send TEXT to serial port
 Soft_Uart_Write(m[i]);

Figure 6.58: Modified program

www.newnespress.com

366 Chapter 6

 i++;
 }
}

//
// Start of MAIN program
//
void main()
{
 unsigned char MyKey, i,j,error,kbd[5],op[12];
 unsigned long Calc, Op1, Op2,Key;
 unsigned char msg1[] = " CALCULATOR PROGRAM";
 unsigned char msg2[] = " Enter First Number: ";
 unsigned char msg3[]= "Enter Second Nummber: ";
 unsigned char msg4[] = " Enter Operation: ";
 unsigned char msg5[] = " Result = ";
//
// Configure the serial port
//
 Soft_Uart_Init(PORTC,7,6,2400,0); // TX=RC6, RX=RC7, Baud=9600
//
// Program loop
//
 for(;;) // Endless loop
 {
 MyKey = 0;
 Op1 = 0;
 Op2 = 0;

 Newline(); // Send newline
 Newline(); // Send newline
 Text_To_Usart(msg1); // Send TEXT
 Newline(); // Send newline
 Newline(); // Send newline

//
// Get the first number
//
 Text_To_Usart(msg2); // Send TEXT
 do // Get first number
 {
 do // If a character ready
 MyKey = Soft_Uart_Read(&error); // Get a character
 while (error);
 if(MyKey == Enter)break; // If ENTER key
 Soft_Uart_Write(MyKey); // Echo the character
 Key = MyKey - '0';
 Op1 = 10*Op1 + Key; // First number in Op1

Figure 6.58: (Cont’d)
(Continued)

www.newnespress.com

367Simple PIC18 Projects

 }while(1);

 Newline();

//
// Get the second character
//
 Text_To_Usart(msg3); // Send TEXT
 do // Get second number
 {
 do
 MyKey = Soft_Uart_Read(&error); // Get a character
 while(error);
 if(Mykey == Enter)break; // If ENTER key
 Soft_Uart_Write(MyKey); // Echo the character
 Key = MyKey - '0';
 Op2 = 10∗Op2 + Key; // Second number in Op2

 }while(1);

 Newline();
//
// Get the operation
//
 Text_To_Usart(msg4);
 do
 {
 do
 MyKey = Soft_Uart_Read(&error); // Get a character
 while(error);
 if(MyKey == Enter)break; // If ENTER key
 Soft_Uart_Write(MyKey); // Echo the character
 Key = MyKey;

 }while(1);

//
// Perform the operation
//
 Newline();
 switch(Key) // Calculate
 {
 case Plus:
 Calc = Op1 + Op2; // If ADD
 break;
 case Minus:
 Calc = Op1 − Op2; // If Subtract
 break;
 case Multiply:
 Calc = Op1 ∗ Op2; // If Multiply

Figure 6.58: (Cont’d)

www.newnespress.com

368 Chapter 6

 break;
 case Divide:
 Calc = Op1 / Op2; // If Divide
 break;
 }

 LongToStr(Calc, op); // Convert to string
//
// Remove leading blanks
//
 j=0;
 for(i=0;i<=11;i++)
 {
 if(op[i] != ' ') // If a blank
 {
 kbd[j]=op[i];
 j++;
 }
 }

 Text_To_Usart(msg5);
 for(i=0; i<j;i++)Soft_Uart_Write(kbd[i]); // Display result

 }
}

Figure 6.58: (Cont’d)

www.newnespress.com

369Simple PIC18 Projects

This page intentionally left blank

CHAP T E R 7

Advanced PIC18 Projects—SD
Card Projects

In this and the remaining chapters we will look at the design of more complex

PIC18 microcontroller–based projects. This chapter discusses the design of Secure

Digital (SD) memory card–based projects. The remaining chapters of the book

describe the basic theory and design of projects based on the popular USB bus and

CAN bus protocols.

7.1 The SD Card

Before going into the design details of SD card–based projects, we should take a look

at the basic principles and operation of SD card memory devices. Figure 7.1 shows

a typical SD card.

The SD card is a flash memory storage device designed to provide high-capacity,

nonvolatile, and rewritable storage in a small size. These devices are frequently used

in many electronic consumer goods, such as cameras, computers, GPS systems,

mobile phones, and PDAs. The memory capacity of the SD cards is increasing all

the time. Currently they are available at capacities from 256MB to 8GB. The SD

cards come in three sizes: standard, mini, and micro. Table 7.1 lists the main

specifications of the most common standard SD and miniSD cards.

SD card specifications are maintained by the SD Card Association, which has over

six hundred members. MiniSD and microSD cards are electrically compatible with

the standard SD cards and can be inserted in special adapters and used as standard

SD cards in standard card slots.

www.newnespress.com

Figure 7.1: A typical SD card

Table 7.1: Standard SD and miniSD cards

Standard SD miniSD

Dimensions 32 � 24 � 2.1mm 21.5 � 20 � 1.4mm

Card weight 2.0 grams 1.0 grams

Operating voltage 2.7�3.6V 2.7�3.6V

Write protect yes no

Pins 9 11

Interface SD or SPI SD or SPI

Current consumption <75mA (Write) <40mA (Write)

www.newnespress.com

372 Chapter 7

SD card speeds are measured three different ways: in KB/s (kilobytes per second),

in MB/s (megabytes per second), in an “x” rating similar to that of CD-ROMS

where “x” is the speed corresponding to 150KB/s. The various “x” based speeds are:

� 4x: 600KB/s

� 16x: 2.4MB/s

� 40x: 6.0MB/s

� 66x: 10MB/s

In this chapter we are using the standard SD card only. The specifications of the smaller

SD cards are the same and are not described further in this chapter.

SD cards can be interfaced to microcontrollers using two different protocols: SD card

protocol and the SPI (Serial Peripheral Interface) protocol. The SPI protocol, being

more widely used, is the one used in this chapter. The standard SD card has 9 pins with

the pin layout shown in Figure 7.2. The pins have different functions depending on the

interface protocol. Table 7.2 gives the function of each pin in both the SD and SPI

modes of operation.

Since the SD card projects described in this chapter are based on the SPI bus protocol, it

is worth looking at the specifications of this bus before proceeding to the projects

themselves.

7.1.1 The SPI Bus

The SPI (Serial Peripheral Interface) bus is a synchronous serial bus standard named by

Motorola that operates in full duplex mode. Devices on a SPI bus operate in master-

slave mode, where the master device initiates the data transfer, selects a slave, and

provides a clock for the slaves. The selected slave responds and sends its data to the

9
1 2 3 4 5 6 7 8

Figure 7.2: Standard SD card pin layout

www.newnespress.com

373Advanced PIC18 Projects—SD Card Projects

master at each clock pulse. The SPI bus can operate with a single master device and one

or more slave devices. This simple interface is also called a “four-wire” interface.

The signals in the SPI bus are named as follows:

� MOSI—master output, slave input

� MISO—master input, slave output

� SCLK—serial clock

� SS—slave select

These signals are also named as:

� DO—data out

� DI—data in

� CLK—clock

� CD—chip select

Figure 7.3 shows the basic connection between a master device and a slave device in

SPI bus. The master sends out data on line MOSI and receives data on line MISO. The

slave must be selected before data transfer can take place.

Table 7.2: Standard SD card pin definitions

Pin Name SD description SPI description

1 CD/DAT3/CS Data line 3 Chip select

2 CMD/Datain Command/response Host to card command and data

3 VSS Supply ground Supply ground

4 VDD Supply voltage Supply voltage

5 CLK Clock Clock

6 VSS2 Supply voltage ground Supply voltage ground

7 DAT0 Data line 0 Card to host data and status

8 DAT1 Data line 1 Reserved

9 DAT2 Data line 2 Reserved

www.newnespress.com

374 Chapter 7

Figure 7.4 shows an instance where more than one slave device is connected to the

SPI bus. Here, each slave is selected individually by the master, and although all the

slaves receive the clock pulses, only the selected slave device responds. If an SPI

device is not selected, its data output goes into a high-impedance state so it does not

interfere with the currently selected device on the bus.

SS

SCLK

MISO

MOSI

CS

CLK

DO

DI

Master Slave

Figure 7.3: SPI master-slave connection

SS3

SS2

SS1

SCLK

MISO

MOSI DI

DO

CLK

CS

DI

DO

CLK

CS

CS

CLK

DO

DI

Slave 1

Master
Slave 2

Slave 3

Figure 7.4: Multiple-slave SPI bus

www.newnespress.com

375Advanced PIC18 Projects—SD Card Projects

Data transmission normally occurs in and out of the master and slave devices as

the master supplies clock pulses. To begin a communication, the master first pulls

the slave select line low for the desired slave device. Then the master issues clock

pulses, and during each SPI clock cycle, a full duplex data transmission occurs.

When there are no more data to be transmitted, the master stops toggling its

clock output.

The SPI bus is currently used by microcontroller interface circuits to talk to a

variety of devices such as:

� Memory devices (SD cards)

� Sensors

� Real-time clocks

� Communications devices

� Displays

The advantages of the SPI bus are:

� Simple communication protocol

� Full duplex communication

� Very simple hardware interface

Its disadvantages are:

� Requires four pins

� No hardware flow control

� No slave acknowledgment

It is worth remarking that there are no SPI standards governed by an international

committee, so there are several versions of SPI bus implementation. In some

applications, the MOSI and MISO lines are combined into a single data line,

thereby reducing the line requirements to three. Some implementations have two

clocks, one to capture (or display) data and the other to clock it into the device.

Also, in some implementations the chip select line may be active-high rather than

active-low.

www.newnespress.com

376 Chapter 7

7.1.2 Operation of the SD Card in SPI Mode

When the SD card is operated in SPI mode, only seven pins are used. Three (pins 3,

4, and 6) are used for the power supply, leaving four pins (pins 1, 2, 5, and 7) for

the SPI mode of operation:

� Two power supply ground (pins 3 and 6)

� Power supply (pin 4)

� Chip select (pin 1)

� Data out (pin 7)

� Data in (pin 2)

� CLK (pin 5)

At power-up, the SD card defaults to the SD bus protocol. The card is switched to

SPI mode if the Chip Select (CS) signal is asserted during reception of the reset

command. When the card is in SPI mode, it only responds to SPI commands. The host

may reset a card by switching the power supply off and then on again.

ThemikroC compiler provides a library of commands for initializing, reading, and writing

to SD cards. It is not necessary to know the internal structure of an SD card in detail

before using one, since the library functions are available. However, a basic understanding

of the internal structure of an SD card is helpful in making the best use of the card. In

this section we will look briefly at the internal architecture and operation of SD cards.

An SD card has a set of registers that provide information about the status of the card.

When the card is operated in SPI mode these are:

� Card identification register (CID)

� Card specific data register (CSD)

� SD configuration register (SCR)

� Operation control register (OCR)

The CID register consists of 16 bytes and contains the manufacturer ID, product name,

product revision, card serial number, manufacturer date code, and a checksum byte.

Table 7.3 shows the structure of the CID register.

www.newnespress.com

377Advanced PIC18 Projects—SD Card Projects

The CSD register consists of 16 bytes and contains card-specific data such as the card

data transfer rate, read/write block lengths, read/write currents, erase sector size, file

format, write protection flags, and checksum. Table 7.4 shows the structure of the CSD

register.

The SCR register is 8 bytes long and contains information about the SD card’s special

features and capabilities, such as security support and data bus widths supported.

The OCR register is only 4 bytes long and stores the VDD voltage profile of the card.

The OCR shows the voltage range in which the card data can be accessed.

All SD-card SPI commands are 6 bytes long, with the MSB transmitted first. Figure 7.5

shows the command format. The first byte is known as the command byte, and the

remaining five bytes are called command arguments. Bit 6 of the command byte is set

to 1 and the MSB bit is always 0. With the remaining six bits we have sixty-four

possible commands, named CMD0 to CMD63. Some of the important commands are:

� CMD0 GO_IDLE_STATE (resets the SD card)

� CMD1 SEND_OP_COND (initializes the card)

� CMD9 SEND_CSD (gets CSD register data)

Table 7.3: Structure of the CID register

Name Type Width Comments

Manufacturer ID (MID) Binary 1 byte Manufacturer ID (e.g., 0�03 for
SanDisk)

OEM/Application ID (OID) ASCII 2 bytes Identifies card OEM and/or card
contents

Product Name (PNM) ASCII 5 bytes Product name

Product Revision (PRV) BCD 1 byte Two binary coded digits

Serial Number (PSN) Binary 4 bytes 32 bits unsigned integer

Reserved 4 bits Upper 4 bits

Manufacture Date Code (MDT) BCD 12 bits Manufacture date (offset from 2000)

CRC-7 Checksum Binary 7 bits Checksum

Not used Binary 1 bit Always 1

www.newnespress.com

378 Chapter 7

Table 7.4: Structure of the CSD register

Bytes

Byte 0 0 0 XXXXXX

Byte 1 TAAC [7:0]

Byte 2 NSAC [7:0]

Byte 3 TRAN_SPEED [7:0]

Byte 4 CCC [11:4]

Byte 5 CCC [3:0] READ_BL_LEN [3:0]

Byte 6 READ_BL_PARTIAL WRITE_BLK_MISALIGN READ_BLK_MISALIGN DSR_IMP X X
C_SIZE (11:10)

Byte 7 C_SIZE [9:2]

Byte 8 C_SIZE [1:0] VDD_R_CURR_MIN (2:0) VDD_R_CURR_MAX (2:0)

Byte 9 VDD_W_CURR_MIN (2:0) VDD_W_CURR_MAX (2:0) C_SIZE_MULT (2:1)

Byte 10 ERASE_BLK_EN SECTOR_SIZE (6:1)

Byte 11 SECTOR_SIZE (0) WP_GRP_SIZE (6:0)

Byte 12 WP_GRP_ENABLE X X R2W_FACTOR(2:0)

Byte 13 WRITE_BL_LEN (1:0) 0 X X X X X

Byte 14 FILE_FORMAT_GRP COPY PERM_WRITE_PROTECT TMP_WRITE_PROTECT
FILE_FORMAT (1:0) X X

Byte 15 CRC (6:0) 1

Field definitions

TAAC data read access time 1 (e.g., 1.5ms)

NSAC data read access time in CLK cycles

TRAN_SPEED max data transfer rate

CCC card command classes

READ_BL_LEN max read data block length (e.g., 512 bytes)

READ_BL_PARTIAL partial blocks for read allowed

(Continued)

www.newnespress.com

379Advanced PIC18 Projects—SD Card Projects

Table 7.4: (Cont’d)

Field definitions

WRITE_BLK_MISALIGN write block misalignment

READ_BLK_MISALIGN read block misalignment

DSR_IMP DSR implemented

C_SIZE device size

VDD_R_CURR_MIN max read current at VDD min

VDD_R_CURR_MAX max read current at VDD max

VDD_W_CURR_MIN max write current at VDD min

VDD_W_CURR_MAX max write current at VDD max

C_SIZE_MULT device size multiplier

ERASE_BLK_EN erase single block enable

SECTOR_SIZE erase sector size

WP_GRP_SIZE write protect group size

WP_GRP_ENABLE write protect group enable

R2W_FACTOR write speed factor

WRITE_BL_LEN max write data block length (e.g., 512 bytes)

WRITE_BL_PARTIAL partial blocks for write allowed

FILE_FORMAT_GRP file format group

COPY copy flag

PERM_WRITE_PROTECT permanent write protect

TMP_WRITE_PROTECT temporary write protect

FILE_FORMAT file format

Byte 1 Byte 2 - 5 Byte 6
7 6 0 731 0
0 1 Command Command argument CRC 1

Figure 7.5: SD card SPI command format

www.newnespress.com

380 Chapter 7

� CMD10 SEND_CID (gets CID register data)

� CMD16 SET_BLOCKLEN (selects a block length in bytes)

� CMD17 READ_SINGLE_BLOCK (reads a block of data)

� CMD24 WRITE_BLOCK (writes a block of data)

� CMD32 ERASE_WR_BLK_START_ADDR (sets the address of the first

write block to be erased)

� CMD33 ERASE_WR_BLK_END_ADDR (sets the address of the last write

block to be erased)

� CMD38 ERASE (erases all previously selected blocks)

In response to a command, the card sends a status byte known as R1. The MSB

bit of this byte is always 0 and the other bits indicate the following error

conditions:

� Card in idle state

� Erase reset

� Illegal command

� Communication CRC error

� Erase sequence error

� Address error

� Parameter error

Reading Data

The SD card in SPI mode supports single-block and multiple-block read operations.

The host should set the block length. After a valid read command the card responds

with a response token, followed by a data block and a CRC check. The block length

can be between 1 and 512 bytes. The starting address can be any valid address in

the address range of the card.

In multiple-block read operations, the card sends data blocks with each block having

its own CRC check attached to the end of the block.

www.newnespress.com

381Advanced PIC18 Projects—SD Card Projects

Writing Data

The SD card in SPI mode supports single- or multiple-block write operations. After

receiving a valid write command from the host, the card responds with a response

token and waits to receive a data block. A one-byte “start block” token is added to

the beginning of every data block. After receiving the data block the card responds

with a “data response” token, and the card is programmed as long as the data block

is received with no errors.

In multiple-block write operations the host sends the data blocks one after the other,

each preceded by a “start block” token. The card sends a response byte after

receiving each data block.

Card Size Parameters SD cards are available in various sizes. At the time of writing,

SanDisk Corporation (www.sandisk.com) offered the models and capacities shown

in Table 7.5. The company may now be offering models with 4GB or even greater

capacity.

In addition to the normal storage area on the card, there is also a protected area

pertaining to the secured copyright management. This area can be used by

applications to save security-related data and can be accessed by the host using

secured read/write commands. The card write protection mechanism does not affect

this area. Table 7.6 shows the size of the protected area and the data area available

to the user for reading and writing data. For example, a 1GB card has 20,480 blocks

(one block is 512 bytes) of protected area and 1,983,744 blocks of user data area.

Table 7.5: SanDisk card models and capacities

Model Capacities

SDSDB-16 16 MB

SDSDB-32 32 MB

SDSDJ-64 64 MB

SDSDJ-128 128 MB

SDSDJ-256 256 MB

SDSDJ-512 512 MB

SDSDJ-1024 1024 MB

www.newnespress.com

382 Chapter 7

Data can be written to or read from any sector of the card using raw sector access

methods. In general, SD card data is structured as a file system and two DOS-formatted

partitions are placed on the card: the user area and the security protected area. The

size of each area is shown in Table 7.7. For example, in a 1GB card, the size of

the security protected area is 519 sectors (1 sector is 512 bytes), and the size of the

user data area is 1,982,976 sectors.

Table 7.6: Protected area and data area sizes

Model
Protected area

(blocks) User area (blocks)

SDSDB-16 352 28,800

SDSDB-32 736 59,776

SDSDJ-64 1,376 121,856

SDSDJ-128 2,624 246,016

SDSDJ-256 5,376 494,080

SDSDJ-512 10,240 940,864

SDSDJ-1024 20,480 1,983,744

1 block ¼ 512 bytes.

Table 7.7: Size of the security protected area and the
user area in a DOS-formatted card

Model
Protected area

(sectors) User area (sectors)

SDSDB-16 39 28,704

SDSDB-32 45 59,680

SDSDJ-64 57 121,760

SDSDJ-128 95 245,824

SDSDJ-256 155 493,824

SDSDJ-512 275 990,352

SDSDJ-1024 519 1,982,976

1 sector ¼ 512 bytes.

www.newnespress.com

383Advanced PIC18 Projects—SD Card Projects

A card can be inserted and removed from the bus without any damage. This is because all

data transfer operations are protected by cyclic redundancy check (CRC) codes, and any

bit changes caused by inserting or removing a card can easily be detected. SD cards

typically operate with a supply voltage of 2.7V. The maximum allowed power supply

voltage is 3.6V. If the card is to be operated from a standard 5.0V supply, a voltage

regulator should be used to drop the voltage to 2.7V.

Using an SD card requires the card to be inserted into a special card holder with

external contacts (see Figure 7.6) so connections are easily made to the required

card pins.

7.2 mikroC Language SD Card Library Functions

The mikroC language provides an extensive set of library functions to read and write

data to SD cards (and also MultiMediaCards, MMC). Data can be written to or read

from a given sector of the card, or the file system on the card can be used for more

sophisticated applications.

The following library functions are provided:

� Mmc_Init (initialize the card)

� Mmc_Read_Sector (read one sector of data)

Figure 7.6: SD card holder

www.newnespress.com

384 Chapter 7

� Mmc_Write_Sector (write one sector of data)

� Mmc_Read_Cid (read CID register)

� Mmc_Read_Csd (read CSD register)

� Mmc_Fat_Init (initialize FAT)

� Mmc_Fat_QuickFormat (format the card to FAT16)

� Mmc_Fat_Assign (assign the file we will be working with)

� Mmc_Fat_Reset (reset the file pointer; opens the currently assigned

file for reading)

� Mmc_Fat_Rewrite (reset the file pointer and clear assigned file; opens

the assigned file for writing)

� Mmc_Fat_Append (move file pointer to the end of assigned file so

new data can be appended to the file)

� Mmc_Fat_Read (read the byte the file pointer points to)

� Mmc_Fat_Write (write a block of data to the assigned file)

� Mmc_Set_File_Date (write system timestamp to a file)

� Mmc_Fat_Delete (delete a file)

� Mmc_Fat_Get_File_Date (read file timestamp)

� Mmc_Fat_Get_File_Size (get file size in bytes)

� Mmc_Fat_Get_Swap_File (create a swap file)

In the remainder of this chapter we will look at some SD-card and PIC18

microcontroller-based projects.

PROJECT 7.1—Read CID Register and Display
on a PC Screen

In this project a SD card is interfaced to a PIC18F452-type microcontroller. The

serial output port of the microcontroller is connected to the serial input port (e.g.,

www.newnespress.com

385Advanced PIC18 Projects—SD Card Projects

COM1) of a PC. The microcontroller reads the contents of the card CID register

and sends this data to the PC so it can be displayed on the PC screen.

Figure 7.7 shows the block diagram of the project.

The circuit diagram of the project is shown in Figure 7.8. The SD card is inserted

into a card holder and then connected to PORTC of a PIC18F452 microcontroller

through 2.2K and 3.3K resistors, using the following pins:

� Card CS to PORTC pin RC2

� Card CLK to PORTC pin RC3

� Card DO to PORTC pin RC4

� Card DI to PORTC pin RC5

According to the SD card specifications, when the card is operating with a supply

voltage of VDD ¼ 3.3V, the input-output pin voltage levels are as follows:

� Minimum produced output HIGH voltage, VOH ¼ 2.475V

� Maximum produced output LOW voltage, VOL ¼ 0.4125V

� Minimum required input HIGH voltage, VIH ¼ 2.0625

� Maximum input HIGH voltage, VIH ¼ 3.6V

� Maximum required input LOW voltage, VIL ¼ 0.825V

PIC
18F452

MAX
232

PC

SD
card

RS232

Figure 7.7: Block diagram of the project

www.newnespress.com

386 Chapter 7

Although the output produced by the card (2.475V) is sufficient to drive the input port

of a PIC microcontroller, the logic HIGH output of the microcontroller (about 4.3V)

is too high for the SD card inputs (maximum 3.6V). Therefore, a potential divider is

set up at the three inputs of the SD card using 2.2K and 3.3K resistors. This limits the

maximum voltage at the inputs of the SD card to about 2.5V:

SD card input voltage ¼ 4:3V � 3:3K=ð2:2K þ 3:3KÞ ¼ 2:48V

Serial output port pin RC6 (TX) of the microcontroller is connected to a MAX232-type

RS232 voltage level converter chip and then to a 9-way D-type connector so it can be

connected to the serial input port of a PC.

The microcontroller is powered from a 5V supply which is obtained via a 7805-type 5V

regulator with a 9V input. The 2.7V–3.6V supply required by the SD card is obtained

via an MC33269DT-3.3 regulator with 3.3V output and is driven from the 5V

input voltage.

The program listing of the project is given in Figure 7.9 (program SD1.C). At the

beginning of the main program, character array CID is declared to have 16 bytes.

Figure 7.8: Circuit diagram of the project

www.newnespress.com

387Advanced PIC18 Projects—SD Card Projects

/∗∗
 SD CARD PROJECT
 ===============

In this project a SD card is connected to PORTC as follows:

 CS RC2
 CLK RC3
 DO RC4
 DI RC5

In addition, a MAX232 type RS232 voltage level converter chip
is connected to serial output port RC6.

The program reads the SD card CID register parameters and
sends it to a PC via the serial interface. This process is
repeated at every 10 seconds.

The UART is set to operate at 2400 Baud, 8 bits, no parity.

Author: Dogan Ibrahim
Date: August 2007
File: SD1.C
∗∗/

//
// This function sends carriage-return and line-feed to USART
//
void Newline()
{
 Soft_Uart_Write(0x0D); // Send carriage-return
 Soft_Uart_Write(0x0A); // Send line-feed
}

//
// This function sends a space character to USART
//
void Space()
{
 Soft_Uart_Write(0x20);
}

//
// This function sends a text to serial port
//
void Text_To_Usart(unsigned char ∗m)
{
 unsigned char i;

Figure 7.9: Program listing

www.newnespress.com

388 Chapter 7

 i = 0;
 while(m[i] != 0)
 { // Send TEXT to serial port
 Soft_Uart_Write(m[i]);
 i++;
 }
}

//
// This function sends string to serial port. The string length is passed as an argument
//
void Str_To_Usart(unsigned char ∗m,unsigned char 1)
{
 unsigned char i;
 unsigned char txt[4];

 i=0;
 for(i=0; i<l; i++)
 {
 ByteToStr(m[i],txt);
 Text_To_Usart(txt);
 Space();
 }
}

//
// Start of MAIN program
//
void main()
{
 unsigned char error,CID[16];
 unsigned char msg[] = " SD CARD CID REGISTER";

//
// Configure the serial port
//
 Soft_Uart_Init(PORTC,7,6,2400,0); // TX=RC6
//
// Initialise the SD card
//
 Spi_Init_Advanced(MASTER_OSC_DIV16,DATA_SAMPLE_MIDDLE,
 CLK_IDLE_LOW, LOW_2_HIGH);
//
// Initialise the SD bus
//
 while(Mmc_Init(&PORTC,2));
//
// Start of MAIN loop. Read the SD card CID register and send the data

Figure 7.9: (Cont’d)

www.newnespress.com

389Advanced PIC18 Projects—SD Card Projects

Variable msg is loaded with the message that is to be displayed when power is

applied to the system. Then the UART is initialized at PORTC with a baud rate

of 2400.

Before the SD card library functions are used, the function Spi_Init_Advanced

must be called with the given arguments. Then the SD card bus is initialized by

calling function Mmc_Init, where it is specified that the card is connected to

PORTC. The program then enters an endless loop that repeats every ten seconds.

Inside this loop the heading message is displayed followed by two new-line

characters. The program then reads the contents of register CID by calling function

Mmc_Read_Cid and stores the data in character array CID. The data is then sent

to the serial port by calling function Str_To_Usart. At the end of the loop two

new-line characters are displayed, the program waits for ten seconds, and the

loop is repeated.

The operation of the project can be tested by connecting the device to a PC and

starting the HyperTerminal terminal emulation program on the PC. Set the

communications parameters to 2400 baud, 8 data bits, 1 stop bit, and no parity bit.

An example output on the screen is shown in Figure 7.10.

// to serial port every 10 seconds
//
 for(;;) // Endless loop
 {

 Text_To_Usart(msg); // Send TEXT
 Newline(); // Send newline
 Newline(); // Send newline
 error = Mmc_Read_Cid(CID); // Read CID register into CID
//
// Send the data to RS232 port
//
 Str_To_Usart(CID,16); // Send CID contents to UART
 Delay_Ms(10000); // Wait 10 seconds
 Newline();
 Newline();
 }
}

Figure 7.9: (Cont’d)

www.newnespress.com

390 Chapter 7

The data returned by the card is:

28 83 86 83 68 77 32 32 16 147 0 89 90 0 115 183

Referring to Table 7.3, we can say the following about this card:

Manufacturer ID ¼ 28 decimal

OEM/Application ID ¼ SV

Product Name ¼ SDM

Product Revision ¼ 1.0 (decimal 16 corresponds to binary “0001 0000”

which is 10 in BCD; the revision number is as n.m,

giving 1.0)

Serial Number ¼ 16 147 0 89 decimal

Figure 7.10: An example output from the project on HyperTerminal

www.newnespress.com

391Advanced PIC18 Projects—SD Card Projects

Reserved ¼ “0000” bits (4 bits only)

Manufacture Date Code ¼ 073 (this 12-bit parameter has the binary value “0000

0111 0011” where the upper 4 bits are derived from the

lower 4 bits of the reserved field and the lower 8 bits are

decimal 115. This gives BCD value 073. The date is in

YYM format since 2000. Thus, this card was

manufactured in 2007, March).

CRC ¼ “1011100” binary (the LSB bit is always 1)

PROJECT 7.2—Read/Write to SD Card Sectors

The hardware of this project is the same as for Project 7.1 (i.e., as shown in Figure 7.8).

In this project, sector 10 of the SD card is filled with “C” characters, and then this

sector is read and the card data is sent to the UART.

The program listing of this project is given in Figure 7.11 (program SD2.C).

Two character arrays called data1 and data2, of 512 bytes each, are declared at

the beginning of the program. Array data1 is loaded with character “C,” and

the contents of this array are written to sector 10 of the SD card. Then the

contents of sector 10 are read into character array data2 and sent to the UART,

displaying 512 “C” characters on the PC screen. Normally, only one array is

used to read and write to the SD card. Two arrays are used here to make it

clear that what is sent to the UART is the card data, not the contents of

array data1.

PROJECT 7.3—Using the Card Filing System

The hardware of this project is the same as for Project 7.1 (i.e., as shown in Figure 7.8).

In this project, a file called MYFILE55.TXT is created on the SD card. String

“This is MYFILE.TXT” is written to the file initially. Then the string “This is the

added data. . .” is appended to the file. The program then reads the contents of

the file and sends the string “This is MYFILE.TXT. This is the added data. . .” to

the UART, enabling the data to be displayed on the PC screen when HyperTerminal

is run.

www.newnespress.com

392 Chapter 7

/∗∗
 SD CARD PROJECT
 ===============

In this project a SD card is connected to PORTC as follows:

 CS RC2
 CLK RC3
 DO RC4
 DI RC5

In addition, a MAX232 type RS232 voltage level converter chip
is connected to serial output port RC6.

The program loads sector 10 of the SD card with character "C".
The contents of sector 10 is then read and sent to the UART,
displaying 512 "C" characters on the PC display.

Author: Dogan Ibrahim
Date: August 2007
File: SD2.C
∗∗/

unsigned char data1[512],data2[512];
unsigned int i;
unsigned short x;

void main()
{

//
// Configure the serial port
//
 Usart_Init(2400);
//
// Initialise the SD card
// Spi_Init_Advanced(MASTER_OSC_DIV16,DATA_SAMPLE_MIDDLE,
 CLK_IDLE_LOW, LOW_2_HIGH);
//
// Initialise the SD bus
//
 while(Mmc_Init(&PORTC,2));
//
// Fill buffer with character "C"
//
 for(i=0; i<512; i++)data1[i] = 'C';
//
// Write to sector 10
//
 x = Mmc_Write_Sector(10, data1);

Figure 7.11: Program listing of the project
(Continued)

www.newnespress.com

393Advanced PIC18 Projects—SD Card Projects

The program listing of the project is given in Figure 7.12 (program SD3.C).

At the beginning of the program the UART is initialized to 2400 baud. Then the

SPI bus and the FAT file system are initialized as required by the library.

The program then creates file MYFILE55.TXT by calling library function

Mmc_Fat_Assign with the arguments as the filename and the creation flag 0�80,

which tells the function to create a new file if the file does not exist. The

filename should be in “filename.extension” format, though it is also possible to

specify an eight-digit filename and a three-digit extension with no “.” between

them, as the “.” will be inserted by the function. Other allowed values of the

creation flag are given in Table 7.8. Note that the SD card must have been

formatted in FAT16 before we can read or write to it. Most new cards are

already formatted, but we can also use the Mmc_Fat_QuickFormat function to

format a card.

The file is cleared (if it is not already empty) using function call Mmc_Fat_Rewrite,

and then the string “This is MYFILE.TXT” is written to the file by calling library

function Mmc_Fat_Write. Note that the size of the data to be written must be

specified as the second argument of this function call. Then Mmc_Fat_Append is

called and the second string “This is the added data. . .” is appended to the file.

Calling function Mmc_Fat_Reset sets the file pointer to the beginning of the

file and also returns the size of the file. Finally, a for loop is set up to read

each character from the file using the Mmc_Fat_Read function call, and

the characters read are sent to the UART with the Usart_Write function

call.

//
// Now read from sector 10 into data2 and send to UART
//
 x = Mmc_Read_Sector(10,data2);

 for(i=0; i<400; i++)Usart_Write(data2[i]); // Send to UART

 for(;;); // Wait here forever
}

Figure 7.11: (Cont’d)

www.newnespress.com

394 Chapter 7

/∗∗
 SD CARD PROJECT
 ===============

In this project a SD card is connected to PORTC as follows:

 CS RC2
 CLK RC3
 DO RC4
 DI RC5

In addition, a MAX232 type RS232 voltage level converter chip
is connected to serial output port RC6.

The program opens a file called MYFILE55.TXT on the SD card
and writes the string "This is MYFILE.TXT." to this file. Then
the string "This is the added data..." is appended to this file.
The program then sends the contents of this file to the UART.

Author: Dogan Ibrahim
Date: August 2007
File: SD3.C
∗∗/

char filename[] = "MYFILE55TXT";
unsigned char txt[] = "This is the added data...";
unsigned short character;
unsigned long file_size,i;

void main()
{

//
// Configure the serial port
//
 Usart_Init(2400);
//
// Initialise the SPI bus
//
 Spi_Init_Advanced(MASTER_OSC_DIV16,DATA_SAMPLE_MIDDLE,
 CLK_IDLE_LOW, LOW_2_HIGH);
//
// Initialise the SD card bus
//
 while(Mmc_Init(&PORTC,2));
//
// Initialise the FAT file system
//
 while(Mmc_Fat_Init(&PORTC,2));
//

Figure 7.12: Program listing of the project
(Continued)

www.newnespress.com

395Advanced PIC18 Projects—SD Card Projects

// Create the file (if it doesn’t exist)
//
 Mmc_Fat_Assign(&filename,0x80);
//
// Clear the file, start with new data
//
 Mmc_Fat_Rewrite();
//
// Write data to the file
//
 Mmc_Fat_Write("This is MYFILE.TXT.",19);
//
// Add more data to the end...
//
 Mmc_Fat_Append();
 Mmc_Fat_Write(txt,sizeof(txt));
//
// Now read the data and send to UART
//
 Mmc_Fat_Reset(&file_size);
 for(i=0; i<file_size; i++)
 {
 Mmc_Fat_Read(&character);
 Usart_Write(character);
 }

 for(;;); // wait here forever

}

Figure 7.12: (Cont’d)

Table 7.8: Mmc_Fat_Assign file creation flags

Flag Description

0�01 Read only

0�02 Hidden

0�04 System

0�08 Volume label

0�10 Subdirectory

0�20 Archive

0�40 Device (internal use only, never found on disk)

0�80 File creation flag. If file does not exist and this
flag is set, a new file with the specified name
will be created.

www.newnespress.com

396 Chapter 7

A snapshot of the screen with the HyperTerminal running is shown in

Figure 7.13.

PROJECT 7.4—Temperature Logger

This project shows the design of a temperature data logger system. The ambient

temperature is read every ten seconds and stored in a file on an SD card. The program is

menu-based, and the user is given the option of:

� Sending the saved file contents to a PC

� Saving the temperature readings to a new file on an SD card

� Appending the temperature readings to an existing file on an SD card

The hardware of this project is similar to the one for Project 7.1 (i.e., as shown in

Figure 7.8), but here, in addition, the serial input port pin (RC7) is connected to the

RS232 connector so data can be received from the PC keyboard. In addition, a

LM35DZ-type analog temperature sensor is connected to the microcontroller’s

analog input AN0 (pin 2). The new circuit diagram is shown in Figure 7.14.

Figure 7.13: Snapshot of the screen

www.newnespress.com

397Advanced PIC18 Projects—SD Card Projects

The LM35 DZ is a three-pin analog temperature sensor that can measure with

1�C accuracy temperatures between 0�C and þ100�C. One pin of the device is

connected to the supply (þ5V), another pin to the ground, and the third to the

analog output. The output voltage of the sensor is directly proportional to the

temperature (i.e., Vo ¼ 10mV/�C). If, for example, the temperature is 10�C,
the output voltage will be 100mV, and if the temperature is 35�C, the output

voltage of the sensor will be 350mV.

When the program is started, the following menu is displayed on the PC screen:

TEMPERATURE DATA LOGGER

1. Send temperature data to the PC

2. Save temperature data in a new file

3. Append temperature data to an existing file

Choice?

Figure 7.14: Circuit diagram of the project

www.newnespress.com

398 Chapter 7

The user then chooses one of the three options. When an option is completed, the

program does not return to the menu. To display the menu again the system has to

be restarted.

The program listing of the project is shown in Figure 7.15 (program SD4.C). In

this project, a file called TEMPERTRTXT is created on the SD card to store the

temperature readings (the library function call will insert the “.” to make the

filename “TEMPERTR.TXT”), if it does not already exist.

The following functions are created at the beginning of the program, before the main

program:

Newline sends a carriage return and a line feed to the UART so the cursor moves

to the next line.

Text_To_Usart receives a text string as its argument and sends it to the UART

to display on the PC screen.

Get_Temperature starts the A/D conversion and receives the converted data into

a variable called Vin. The voltage corresponding to this value is then calculated in

millivolts and divided by 10 to find the actual measured temperature in �C. The
decimal part of the found temperature is then converted into string form using

function LongToStr. The leading spaces are removed from this string, and the

resulting string is stored in character array temperature. Then the fractional parts

of the measured temperature, a carriage return, and a line feed are added to this

character array, which is later written to the SD card.

The following operations are performed inside the main program:

� Initialize the UART to 2400 baud

� Initialize the SPI bus

� Initialize the FAT file system

� Display menu on the PC screen

� Get a choice from the user (1, 2, or 3)

� If the choice ¼ 1, assign the temperature file, read the temperature records, and

display them on the PC screen

www.newnespress.com

399Advanced PIC18 Projects—SD Card Projects

/∗∗
 TEMPERATURE LOGGER PROJECT
 ============================

In this project a SD card is connected to PORTC as follows:

 CS RC2
 CLK RC3
 DO RC4
 DI RC5

In addition, a MAX232 type RS232 voltage level converter chip
is connected to serial ports RC6 and RC7. Also, a LM35DZ type
analog temperature sensor is connected to analog input AN0 of
the microcontroller.

The program is menu based. The user is given options of either
to send the saved temperature data to the PC, or to read and
save new data on the SD card, or to read temperature data and
append to the existing file. Temperature is read at every 10
seconds.

The temperature is stored in a file called "TEMPERTR.TXT"

Author: Dogan Ibrahim
Date: August 2007
File: SD4.C
∗∗/

char filename[] = "TEMPERTRTXT";
unsigned short character;
unsigned long file_size,i,rec_size;
unsigned char ch1,ch2,flag,ret_status,choice;
unsigned char temperature[10],txt[12];

//
// This function sends carriage-return and line-feed to USART
//
void Newline()
{
 Usart_Write(0x0D); // Send carriage-return
 Usart_Write(0x0A); // Send line-feed
}

//
// This function sends a space character to USART
//
void Space()
{

Figure 7.15: Program listing of the project

www.newnespress.com

400 Chapter 7

 Usart_Write(0x20);
}

//
// This function sends a text to serial port
//
void Text_To_Usart(unsigned char ∗m)
{
 unsigned char i;

 i = 0;
 while(m[i] != 0)
 { // Send TEXT to serial port
 Usart_Write(m[i]);
 i++;
 }
}

//
// This function reads the temperature from analog input AN0
//
void Get_Temperature()
{
 unsigned long Vin, Vdec,Vfrac;
 unsigned char op[12];
 unsigned char i,j;

 Vin = Adc_Read(0); // Read from channel 0 (AN0)
 Vin = 488∗Vin; // Scale up the result
 Vin = Vin /10; // Convert to temperature in C
 Vdec = Vin / 100; // Decimal part
 Vfrac = Vin % 100; // Fractional part
 LongToStr(Vdec,op); // Convert Vdec to string in "op"
//
// Remove leading blanks
//
 j=0;
 for(i=0;i<=11;i++)
 {
 if(op[i] != ' ') // If a blank
 {
 temperature[j]=op[i];
 j++;
 }
 }

 temperature[j] = '.'; // Add “.”
 ch1 = Vfrac / 10; // fractional part
 ch2 = Vfrac % 10;

Figure 7.15: (Cont’d)

www.newnespress.com

401Advanced PIC18 Projects—SD Card Projects

 j++;
 temperature[j] = 48+ch1; // Add fractional part
 j++;
 temperature[j] = 48+ch2;
 j++;
 temperature[j] = 0x0D; // Add carriage-return
 j++;
 temperature[j] = 0x0A; // Add line-feed
 j++;
 temperature[j]='\0';
}

//
// Start of MAIN program
//
void main()
{
 rec_size = 0;
//
// Configure A/D converter
//
 TRISA = 0xFF;
 ADCON1 = 0x80; // Use AN0, Vref = +5V
//
// Configure the serial port
//
 Usart_Init(2400);
//
// Initialise the SPI bus
//
 Spi_Init_Advanced(MASTER_OSC_DIV16,DATA_SAMPLE_MIDDLE,
 CLK_IDLE_LOW, LOW_2_HIGH);
//
// Initialise the SD card bus
//
 while(Mmc_Init(&PORTC,2));
//
// Initialise the FAT file system
//
 while(Mmc_Fat_Init(&PORTC,2));
//
// Display the MENU and get user choice
//
 Newline();
 Text_To_Usart("TEMPERATURE DATA LOGGER");
 Newline();
 Newline();
 Text_To_Usart("1. Send temperature data to the PC");

Figure 7.15: (Cont’d)

www.newnespress.com

402 Chapter 7

 Newline();
 Text_To_Usart("2. Save temperature data in a new file");
 Newline();
 Text_To_Usart("3. Append temperature data to an existing file");
 Newline();
 Newline();
 Text_To_Usart("Choice ? ");

//
// Read a character from the PC keyboard
//
 flag = 0;
 do {
 if (Usart_Data_Ready()) // If data received
 {
 choice = Usart_Read(); // Read the received data
 Usart_Write(choice); // Echo received data
 flag = 1;
 }
 } while (!flag);
 Newline();
 Newline();

//
// Now process user choice
//
 switch(choice)
 {
 case '1':
 ret_status = Mmc_Fat_Assign(&filename,1);
 if(!ret_status)
 {
 Text_To_Usart("File does not exist..No saved data...");
 Newline();
 Text_To_Usart("Restart the program and save data to the file...");
 Newline();
 for(;;);
 }
 else
 {
 //
 // Read the data and send to UART
 //
 Text_To_Usart("Sending saved data to the PC...");
 Newline();
 Mmc_Fat_Reset(&file_size);
 for(i=0; i<file_size; i++)
 {
 Mmc_Fat_Read(&character);
 Usart_Write(character);

Figure 7.15: (Cont’d)

www.newnespress.com

403Advanced PIC18 Projects—SD Card Projects

 }
 Newline();
 text_To_Usart("End of data...");
 Newline();
 for(;;);
 }
 case '2':
 //
 // Start the A/D converter, get temperature readings every
 // 10 seconds, and then save in a NEW file
 //
 Text_To_Usart("Saving data in a NEW file...");
 Newline();
 Mmc_Fat_Assign(&filename,0x80); // Assign the file
 Mmc_Fat_Rewrite(); // Clear
 Mmc_Fat_Write("TEMPERATURE DATA - SAVED EVERY 10
 SECONDS\r\n",43);
 //
 // Read the temperature from A/D converter, format and save
 //
 for(;;)
 {
 Mmc_Fat_Append();
 Get_Temperature();
 Mmc_Fat_Write(temperature,9);
 rec_size++;
 LongToStr(rec_size,txt);
 Newline();
 Text_To_Usart("Saving record:");
 Text_To_Usart(txt);
 Delay_ms(10000);
 }
 break;
 case '3':
 //
 // Start the A/D converter, get temperature readings every
 // 10 seconds, and then APPEND to the existing file
 //
 Text_To_Usart("Appending data to the existing file...");
 Newline();
 ret_status = Mmc_Fat_Assign(&filename,1); // Assign the file
 if(!ret_status)
 {
 Text_To_Usart("File does not exist - can not append...");
 Newline();
 Text_To_Usart("Restart the program and choose option 2...");
 Newline();
 for(;;);
 }
 else

Figure 7.15: (Cont’d)

www.newnespress.com

404 Chapter 7

� If the choice ¼ 2, create a new temperature file, get new temperature readings

every ten seconds, and store them in the file

� If the choice ¼ 3, assign to the temperature file, get new temperature readings

every ten seconds, and append them to the existing temperature file

� If the choice is not 1, 2, or 3, display an error message on the screen

The menu options are described here in more detail:

Option 1: The program attempts to assign the existing temperature file. If the file

does not exist, the error messages “File does not exist. . .No saved data. . .” and

“Restart the program and save data to the file. . .” are displayed on the screen, and the

user is expected to restart the program. If, on the other hand, the temperature file

already exists, then the message: “Sending saved data to the PC. . .” is displayed on

the PC screen. Function Mmc_Fat_Reset is called to set the file pointer to the

beginning of the file and also return the size of the file in bytes. Then a for loop is

 {
 //
 // Read the temperature from A/D converter, format and save
 //
 for(;;)
 {
 Mmc_Fat_Append();
 Get_Temperature();
 Mmc_Fat_Write(temperature,9);
 rec_size++;
 LongToStr(rec_size,txt);
 Newline();
 Text_To_Usart("Appending new record:");
 Text_To_Usart(txt);
 Delay_ms(10000);
 }
 }
 default:
 Text_To_Usart("Wrong choice...Restart the program and try again...");
 Newline();
 for(;;);
 }
}

Figure 7.15: (Cont’d)

www.newnespress.com

405Advanced PIC18 Projects—SD Card Projects

formed, temperature records are read from the card one byte at a time using function

Mmc_Fat_Read, and these records are sent to the PC screen using function

Usart_Write. At the end of the data the message “End of data. . .” is sent to the

PC screen.

Option 2: In this option, the message “Saving data in a NEW file. . .” is sent to

the PC screen, and a new file is created using function Mmc_Fat_Assign with

the create flag set to 0�80. The message “TEMPERATURE DATA - SAVED

EVERY 10 SECONDS” is written on the first line of the file using function

Mmc_Fat_Write. Then, a for loop is formed, the SD card is set to file append

mode by calling function Mmc_Fat_Append, and a new temperature reading is

obtained by calling function Get_Temperature. The temperature is then written

to the SD card. Also, the current record number appears on the PC screen to

indicate that the program is actually working. This process is repeated after a

ten-second delay.

Option 3: This option is very similar to Option 2, except that a new file is not created

but rather the existing temperature file is opened in read mode. If the file does not

exist, then an error message is displayed on the PC screen.

Default: If the user entry is a number other than 1, 2, or 3, then this option runs and

displays the error message “Wrong choice. . .Restart the program and try again. . .”

on the PC screen.

The project can be tested by connecting the output of the microcontroller to the serial

port of a PC (e.g., COM1) and then running the HyperTerminal terminal emulation

software. Set the communications parameters to 2400 baud, 8 data bits, 1 stop bit, and

no parity bit. Figure 7.16 shows a snapshot of the PC screen when Option 2 is selected

to save the temperature records in a new file. Notice that the current record numbers

are displayed on the screen as they are written to the SD card.

Figure 7.17 shows a screen snapshot where Option 1 is selected to read the temperature

records from the SD card and display them on the PC screen.

www.newnespress.com

406 Chapter 7

Figure 7.16: Saving temperature records on an SD card with Option 2

Figure 7.17: Displaying the records on the PC screen with Option 1

www.newnespress.com

407Advanced PIC18 Projects—SD Card Projects

Finally, Figure 7.18 shows a screen snapshot when Option 3 is selected to append the

temperature readings to the existing file.

Figure 7.18: Saving temperature records on an SD card with Option 3

www.newnespress.com

408 Chapter 7

CHAP T E R 8

Advanced PIC18 Projects—USB
Bus Projects

The Universal Serial Bus (USB) is one of the most common interfaces used in

electronic consumer products today, including PCs, cameras, GPS devices, MP3

players, modems, printers, and scanners, to name a few.

The USB was originally developed by Compaq, Microsoft, Intel, and NEC, and later by

Hewlett-Packard, Lucent, and Philips as well. These companies eventually formed the

nonprofit corporation USB Implementers Forum Inc. to organize the development

and publication of USB specifications.

This chapter describes the basic principles of the USB bus and shows how to use

USB-based applications with PIC microcontrollers. The USB bus is a complex

protocol. A complete discussion of its design and use is beyond the scope of this

chapter. Only the basic principles, enough to be able to use the USB bus, are

outlined here. On the other hand, the functions offered by the mikroC language that

simplify the design of USB-based microcontroller projects are described in some detail.

The USB is a high-speed serial interface that can also provide power to devices

connected to it. A USB bus supports up to 127 devices (limited by the 7-bit address

field—note that address 0 is not used as it has a special purpose) connected through a

four-wire serial cable of up to three or even five meters in length. Many USB devices

can be connected to the same bus with hubs, which can have 4, 8, or even 16 ports.

A device can be plugged into a hub which is plugged into another hub, and so on.

The maximum number of tiers permitted is six. According to the specification, the

maximum distance of a device from its host is about thirty meters, accomplished by

www.newnespress.com

using five hubs. For longer-distance bus communications, other methods such as use of

Ethernet are recommended.

The USB bus specification comes in two versions: the earlier version, USB1.1, supports

11Mbps, while the new version, USB 2.0, supports up to 480Mbps. The USB

specification defines three data speeds:

� Low speed—1.5Mb/sec

� Full speed—12Mb/sec

� High speed—480Mb/sec

The maximum power available to an external device is limited to about 100mA at

5.0V.

USB is a four-wire interface implemented using a four-core shielded cable. Two types

of connectors are specified and used: Type A and Type B. Figure 8.1 shows typical

USB connectors. Figure 8.2 shows the pin-out of the USB connectors.

The signal wire colors are specified. The pins and wire colors of a Type A or Type B

connector are given in Table 8.1.

Figure 8.1: USB connectors

www.newnespress.com

410 Chapter 8

The specification also defines a mini-B connector, mainly used in smaller portable

electronic devices such as cameras and other handheld devices. This connector has a

fifth pin called ID, though this pin is not used. The pin assignment and wire colors of a

mini-B connector are given in Table 8.2.

Two of the pins, Dataþ and Data�, form a twisted pair and carry differential data

signals and some single-ended data states.

43

12

4321

Figure 8.2: Pin-out of USB connectors

Table 8.1: USB connector pin assignments

Pin no. Name Color

1 þ5.0V Red

2 Data� White

3 Dataþ Green

4 Ground Black

Table 8.2: Mini USB pin assignments

Pin no. Name Color

1 þ5.0V Red

2 �Data White

3 þData Green

4 Not used –

5 Ground Black

www.newnespress.com

411Advanced PIC18 Projects—USB Bus Projects

USB signals are bi-phase, and signals are sent from the host computer using the NRZI

(non-return to zero inverted) data encoding technique. In this technique, the signal level

is inverted for each change to a logic 0. The signal level for a logic 1 is not changed.

A 0 bit is “stuffed” after every six consecutive ones in the data stream to make the data

dynamic (this is called bit stuffing because the extra bit lengthens the data stream).

Figure 8.3 shows how the NRZI is implemented.

A packet of data transmitted by the host is sent to every device connected to the bus,

traveling downward through the chain of hubs. All the devices receive the signal, but

only one of them, the addressed one, accepts the data. Conversely, only one device at

any time can transmit to the host, and the data travels upward through the chain of hubs

until it reaches the host.

USB devices attached to the bus may be full-custom devices, requiring a full-custom

device driver, or they may belong to a device class. Device classes enable the

same device driver to be used for several devices having similar functionalities.

For example, a printer device has the device class 0�07, and most printers use

drivers of this type.

The most common device classes are given in Table 8.3. The USB human interface

device (HID) class is of particular interest, as it is used in the projects in this

chapter.

Some common USB terms are:

Endpoint: An endpoint is either a source or a sink of data. A single USB device can

have a number of endpoints, the limit being sixteen IN and sixteen OUT endpoints.

Transaction: A transaction is a transfer of data on the bus.

Pipe: A pipe is a logical data connection between the host and an endpoint.

Data
1 0 1 0 0 1 1 0 0 0 1

Figure 8.3: NRZI data

www.newnespress.com

412 Chapter 8

8.1 Speed Identification on the Bus

At the device end of the bus, a 1.5K pull-up resistor is connected from the Dþ or D�
line to 3.3V. On a full-speed bus, the resistor is connected from the Dþ line to 3.3V,

and on a low-speed bus the resistor is from D� line to 3.3V. When no device is plugged

in, the host will see both data lines as low. Connecting a device to the bus will pull

either the Dþ or the D� line to logic high, and the host will know that a device is

plugged into the bus. The speed of the device is determined by observing which line

is pulled high.

8.2 USB States

Some of the USB bus states are:

Idle: The bus is in idle state when the pulled-up line is high and the other line is low.

This is the state of the lines before and after a packet transmission.

Detached: When no device is connected to the bus, the host sees both lines as low.

Attached: When a device is connected to the bus, the host sees either Dþ or D� go

to logic high, which means a device has been plugged in.

Table 8.3: USB device classes

Device class Description Example device

0�00 Reserved �
0�01 USB audio device Sound card

0�02 USB communications device Modem, fax

0�03 USB human interface device Keyboard, mouse

0�07 USB printer device Printer

0�08 USB mass storage device Memory card, flash drive

0�09 USB hub device Hubs

0�0B USB smart card reader device Card reader

0�0E USB video device Webcam, scanner

0�E0 USB wireless device Bluetooth

www.newnespress.com

413Advanced PIC18 Projects—USB Bus Projects

J state: The same as idle state.

K state: The opposite of J state.

SE0: The single ended zero state, where both lines on the bus are pulled low.

SE1: The single ended one state, where both lines on the bus are high. SE1 is an

illegal condition on the bus; it must never be in this state.

Reset: When the host wants to communicate with a device on the bus, it first

sends a “reset” condition by pulling low both data lines (SE0 state) for at least

10ms.

EOP: The end of packet state, which is basically an SE0 state for 2 bit times,

followed by a J state for 1 bit time.

Keep alive: The state achieved by EOP. Keep alive is sent at least once every

millisecond to keep the device from suspending.

Suspend: Used to save power, suspend is implemented by not sending anything to a

device for 3ms. A suspended device draws less than 0.5mA from the bus and must

recognize reset and resume signals.

Resume: A suspended device is woken up by reversing the polarity of the signal on

the data lines for at least 20ms, followed by a low-speed EOP signal.

8.3 USB Bus Communication

USB is a host-centric connectivity system where the host dictates the use of the USB

bus. Each device on the bus is assigned a unique USB address, and no slave device can

assert a signal on the bus until the host asks for it. When a new USB device is plugged

into a bus, the USB host uses address 0 to ask basic information from the device. Then

the host assigns it a unique USB address. After the host asks for and receives further

information about the device, such as the name of the manufacturer, device capabilities,

and product ID, two-way transactions on the bus can begin.

8.3.1 Packets

Data is transmitted on a USB bus in packets. A packet starts with a sync pattern to allow

the receiver clock to synchronize with the data. The data bytes of the packet follow,

ending with an end of packet signal.

www.newnespress.com

414 Chapter 8

A packet identifier (PID) byte immediately follows the sync field of every USB packet.

A PID itself is 4 bits long, and the 4 bits are repeated in a complemented form. There

are seventeen different PID values, as shown in Table 8.4. These include one reserved

value and one that is used twice, with two different meanings.

There are four packet formats, based on which PID is at the start of the packet: token

packets, data packets, handshake packets, and special packets.

Figure 8.4 shows the format of a token packet, which is used for OUT, IN, SOF (start of

frame), and SETUP. The packet contains a 7-bit address, a 4-bit ENDP (endpoint

number), a 5-bit CRC checksum, and an EOP (end of packet).

A data packet is used for DATA0, DATA1, DATA2, and MDATA data transactions.

The packet format is shown in Figure 8.5 and consists of the PID, 0–1024 bytes of data,

a 2-byte CRC checksum, and an EOP.

Table 8.4: PID values

PID type PID name Bits Description

Token OUT
IN
SOF
SETUP

1110 0001
0110 1001
1010 0101
0010 1101

Host to device transaction
Device to host transaction
Start of frame
Setup command

Data DATA0
DATA1
DATA2
MDATA

1100 0011
0100 1011
1000 0111
0000 1111

Data packet PID even
Data packet PID odd
Data packet PID high speed
Data packet PID high speed

Handshake ACK
NAK
STALL
NYET

1101 0010
0101 1010
0001 1110
1001 0110

Receiver accepts packet
Receiver does not accept packet
Stalled
No response from receiver

Special PRE
ERR
SPLIT
PING
Reserved

0011 1100
0011 1100
0111 1000
1011 0100
1111 0000

Host preample
Split transaction error
High-speed split transaction
High-speed flow control
Reserved

Sync PID ADDR ENDP CRC EOP
8 bits 7 bits 4 bits 5 bits

Figure 8.4: Token packet

www.newnespress.com

415Advanced PIC18 Projects—USB Bus Projects

Figure 8.6 shows the format of a handshake packet, which is used for ACK, NAK,

STALL, and NYET. ACK is used when a receiver acknowledges that it has received an

error-free data packet. NAK is used when the receiving device cannot accept the packet.

STALL indicates when the endpoint is halted, and NYET is used when there is no

response from the receiver.

8.3.2 Data Flow Types

Data can be transferred on a USB bus in four ways: bulk transfer, interrupt transfer,

isochronous transfer, and control transfer.

Bulk transfers are designed to transfer large amounts of data with error-free delivery

and no guarantee of bandwidth. If an OUT endpoint is defined as using bulk transfers,

then the host will transfer data to it using OUT transactions. Similarly, if an IN

endpoint is defined as using bulk transfers, then the host will transfer data from it using

IN transactions. In general, bulk transfers are used where a slow rate of transfer is not a

problem. The maximum packet size in a bulk transfer is 8 to 64 packets at full speed,

and 512 packets at high speed (bulk transfers are not allowed at low speeds).

Interrupt transfers are used to transfer small amounts of data with a high bandwidth

where the data must be transferred as quickly as possible with no delay. Note that

interrupt transfers have nothing to do with interrupts in computer systems. Interrupt

packets can range in size from 1 to 8 bytes at low speed, from 1 to 64 bytes at full

speed, and up to 1024 bytes at high speed.

Isochronous transfers have a guaranteed bandwidth, but error-free delivery is not

guaranteed. This type of transfer is generally used in applications, such as audio data

Sync PID Data CRC EOP
1 byte 0–1024

bytes
2
bytes

Figure 8.5: Data packet

Sync PID EOP
1 byte

Figure 8.6: Handshake packet

www.newnespress.com

416 Chapter 8

transfer, where speed is important but the loss or corruption of some data is not. An

isochronous packet may contain 1023 bytes at full speed or up to 1024 bytes at high

speed (isochronous transfers are not allowed at low speeds).

A control transfer is a bidirectional data transfer, using both IN and OUT endpoints.

Control transfers are generally used for initial configuration of a device by the host.

The maximum packet size is 8 bytes at low speed, 8 to 64 bytes at full speed, and

64 bytes at high speed. A control transfer is carried out in three stages: SETUP,

DATA, and STATUS.

8.3.3 Enumeration

When a device is plugged into a USB bus, it becomes known to the host through a

process called enumeration. The steps of enumeration are:

� When a device is plugged in, the host becomes aware of it because one of the

data lines (Dþ or D�) becomes logic high.

� The host sends a USB reset signal to the device to place the device in a known

state. The reset device responds to address 0.

� The host sends a request on address 0 to the device to find out its maximum

packet size using a Get Descriptor command.

� The device responds by sending a small portion of the device descriptor.

� The host sends a USB reset again.

� The host assigns a unique address to the device and sends a Set Address request

to the device. After the request is completed, the device assumes the new

address. At this point the host is free to reset any other newly plugged-in

devices on the bus.

� The host sends a Get Device Descriptor request to retrieve the complete device

descriptor, gathering information such as manufacturer, type of device, and

maximum control packet size.

� The host sends a Get Configuration Descriptors request to receive the device’s

configuration data, such as power requirements and the types and number of

interfaces supported.

� The host may request any additional descriptors from the device.

www.newnespress.com

417Advanced PIC18 Projects—USB Bus Projects

The initial communication between the host and the device is carried out using the

control transfer type of data flow.

Initially, the device is addressed, but it is in an unconfigured state. After the host gathers

enough information about the device, it loads a suitable device driver which configures

the device by sending it a Set Configuration request. At this point the device has been

configured, and it is ready to respond to device-specific requests (i.e., it can receive data

from and send data to the host).

8.4 Descriptors

All USB devices have a hierarchy of descriptors that describe various features of

the device: the manufacturer ID, the version of the device, the version of USB it

supports, what the device is, its power requirements, the number and type of

endpoints, and so forth.

The most common USB descriptors are:

� Device descriptors

� Configuration descriptors

� Interface descriptors

� HID descriptors

� Endpoint descriptors

The descriptors are in a hierarchical structure as shown in Figure 8.7. At the top of the

hierarchy we have the device descriptor, then the configuration descriptors, followed

by the interface descriptors, and finally the endpoint descriptors. The HID descriptor

always follows the interface descriptor when the interface belongs to the HID class.

All descriptors have a common format. The first byte (bLength) specifies the

length of the descriptor, while the second byte (bDescriptorType) indicates

the descriptor type.

8.4.1 Device Descriptors

The device descriptor is the top-level set of information read from a device and the first

item the host attempts to retrieve.

www.newnespress.com

418 Chapter 8

A USB device has only one device descriptor, since the device descriptor represents

the entire device. It provides general information such as manufacturer, serial

number, product number, the class of the device, and the number of configurations.

Table 8.5 shows the format for a device descriptor with the meaning of each

field.

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

bcdUSB reports the highest version of USB the device supports in BCD format. The

number is represented as 0�JJMN, where JJ is the major version number, M is the

minor version number, and N is the subminor version number. For example, USB 1.1

is reported as 0�0110.

bDeviceClass, bDeviceSubClass, and bDeviceProtocol are assigned by the USB

organization and are used by the system to find a class driver for the device.

bMaxPacketSize0 is the maximum input and output packet size for endpoint 0.

idVendor is assigned by the USB organization and is the vendor’s ID.

idProduct is assigned by the manufacturer and is the product ID.

bcdDevice is the device release number and has the same format as the bcdUSB.

bNumConfigurations

Device
Descriptor

Configuration
Descriptor

Configuration
Descriptor

bNumInterfaces

bNumEndpoint

Interface
Descriptor

Interface
Descriptor

Interface
Descriptor

Interface
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Figure 8.7: USB descriptor hierarchy

www.newnespress.com

419Advanced PIC18 Projects—USB Bus Projects

iManufacturer, iProduct, and iSerialNumber are details about the manufacturer and

the product. These fields have no requirement and can be set to zero.

bNumConfigurations is the number of configurations the device supports.

Table 8.6 shows an example device descriptor for a mouse device. The length of the

descriptor is 18 bytes (bLength ¼ 18), and the descriptor type is 0�01 (bDescriptorType

¼ 0�01). The device supports USB 1.1 (bcdUSB ¼ 0�0110). bDeviceClass,

bDeviceSubClass, and bDeviceProtocol are set to zero to show that the class

information is in the interface descriptor. bMaxPacketSize0 is set to 8 to show that the

maximum input and output packet size for endpoint 0 is 8 bytes. The next three bytes

identify the device by the vendor ID, product ID, and device version number. The next

three items define indexes to strings about the manufacturer, product, and the serial

number. Finally, we notice that the mouse device has just one configuration

(bNumConfigurations ¼ 1).

Table 8.5: Device descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 Device descriptor (0�01)

2 bcdUSB 2 Highest version of USB supported

4 bDeviceClass 1 Class code

5 bDeviceSubClass 1 Subclass code

6 bDeviceProtocol 1 Protocol code

7 bMaxPacketSize0 1 Maximum packet size

8 idVendor 2 Vendor ID

10 idProduct 2 Product ID

12 bcdDevice 2 Device release number

14 iManufacturer 1 Manufacturer string descriptor

15 iProduct 1 Index of product string descriptor

16 iSerialNumber 1 Index of serial number descriptor

17 bNumConfigurations 1 Number of possible configurations

www.newnespress.com

420 Chapter 8

8.4.2 Configuration Descriptors

The configuration descriptor provides information about the power requirements of

the device and how many different interfaces it supports. There may be more than

one configuration for a device.

Table 8.7 shows the format of the configuration descriptor with the meaning of each

field.

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

wTotalLength is the total combined size of this set of descriptors (i.e., total of

configuration descriptor þ interface descriptor þ HID descriptor þ endpoint

descriptor). When the configuration descriptor is read by the host, it returns the entire

configuration information, which includes all interface and endpoint descriptors.

Table 8.6: Example device descriptor

Offset Field Value Description

0 bLength 18 Size is 18

1 bDescriptorType 0�01 Descriptor type

2 bcdUSB 0�0110 Highest USB supported ¼ USB 1.1

4 bDeviceClass 0�00 Class information in interface descriptor

5 bDeviceSubClass 0�00 Class information in interface descriptor

6 bDeviceProtocol 0�00 Class information in interface descriptor

7 bMaxPacketSize0 8 Maximum packet size

8 idVendor 0�02A XYZ Co Ltd.

10 idProduct 0�1001 Mouse

12 bcdDevice 0�0011 Device release number

14 iManufacturer 0�20 Index to manufacturer string

15 iProduct 0�21 Index of product string

16 iSerialNumber 0�22 Index of serial number string

17 bNumConfigurations 1 Number of possible configurations

www.newnespress.com

421Advanced PIC18 Projects—USB Bus Projects

bNumInterfaces is the number of interfaces present for this configuration.

bConfigurationValue is used by the host (in command SetConfiguration) to select the

configuration.

iConfiguration is an index to a string descriptor describing the configuration in

readable format.

bmAttributes describes the power requirements of the device. If the device is USB

bus-powered, then bit D7 is set. If it is self-powered, it sets bit D6. Bit D5 specifies

the remote wakeup of the device. Bits D7 and D0–D4 are reserved.

bMaxPower defines the maximum power the device will draw from the bus in 2mA

units.

Table 8.8 shows an example configuration descriptor for a mouse device. The length

of the descriptor is 9 bytes (bLength ¼ 9), and the descriptor type is 0�02

(bDescriptorType ¼ 0�02). The total combined size of the descriptors is 34

(wTotalLength ¼ 34). The number of interfaces for the mouse device is 1

(bNumInterfaces ¼ 1). Host SetConfiguration command must use the value 1 as an

argument in SetConfiguration() to select this configuration. There is no string to

describe this configuration. bmAttributes is set to 0�40 to indicate that the device is

self-powered. bMaxPower is set to 10 to specify that the maximum current drawn by

the device is 20mA.

Table 8.7: Configuration descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 Device descriptor (0�02)

2 wTotalLength 2 Total bytes returned

4 bNumInterfaces 1 Number of interfaces

5 bConfigurationValue 1 Value used to select configuration

6 iConfiguration 1 Index describing configuration string

7 bmAttributes 1 Power supply attributes

8 bMaxPower 2 Max power consumption in 2mA

www.newnespress.com

422 Chapter 8

8.4.3 Interface Descriptors

The interface descriptors specify the class of the interface and the number of endpoints

it uses. There may be more than one interface.

Table 8.9 shows the format of the interface descriptor with the meaning of each field.

Table 8.8: Example configuration descriptor

Offset Field Value Description

0 bLength 9 Descriptor size is 9 bytes

1 bDescriptorType 0�02 Device descriptor is 0�02

2 wTotalLength 34 Total bytes returned is 34

4 bNumInterfaces 1 Number of interfaces is 1

5 bConfigurationValue 1 Value used to select configuration

6 iConfiguration 0�2A Index describing configuration string

7 bmAttributes 0�40 Power supply attributes

8 bMaxPower 10 Max power consumption is 20mA

Table 8.9: Interface descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 Device descriptor (0�04)

2 bInterfaceNumber 1 Number of interface

3 bAlternateSetting 1 Value to select alternate setting

4 bNumEndpoints 1 Number of endpoints

5 bInterfaceClass 1 Class code

6 bInterfaceSubClass 1 Subclass code

7 bInterfaceProtocol 1 Protocol code

8 iInterface 1 Index of string descriptor to interface

www.newnespress.com

423Advanced PIC18 Projects—USB Bus Projects

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

bInterfaceNumber indicates the index of the interface descriptor.

bAlternateSetting can be used to specify alternate interfaces that can be selected by

the host using command Set Interface.

bNumEndpoints indicates the number of endpoints used by the interface.

bInterfaceClass specifies the device class code (assigned by the USB organization).

bInterfaceSubClass specifies the device subclass code (assigned by the USB

organization).

bInterfaceProtocol specifies the device protocol code (assigned by the USB

organization).

iInterface is an index to a string descriptor of the interface.

Table 8.10 shows an example interface descriptor for a mouse device. The descriptor

length is 9 bytes (bLength ¼ 9) and the descriptor type is 0�04 (bDescriptorType ¼
0�04). The interface number used to reference this interface is 1 (bInterfaceNumber¼ 1).

Table 8.10: Example interface descriptor

Offset Field Value Description

0 bLength 9 Descriptor size is 9 bytes

1 bDescriptorType 0�04 Device descriptor is 0�04

2 bInterfaceNumber 0 Number of interface

3 bAlternateSetting 0 Value to select alternate setting

4 bNumEndpoints 1 Number of endpoints is 1

5 bInterfaceClass 0�03 Class code is 0�03

6 bInterfaceSubClass 0�02 Subclass code is 0�02

7 bInterfaceProtocol 0�02 Protocol code is 0�02

8 iInterface 0 Index of string descriptor to interface

www.newnespress.com

424 Chapter 8

bAlternateSetting is set to 0 (i.e., no alternate interfaces). The number of endpoints

used by this interface is 1 (excluding endpoint 0), and this is the endpoint used for the

mouse to send its data. The device class code is 0�03 (bInterfaceClass ¼ 0�03).

This is an HID (human interface device) type class. The interface subclass is set to

0�02. The device protocol is 0�02 (mouse). There is no string to describe this

interface (iInterface ¼ 0).

8.4.4 HID Descriptors

An HID descriptor always follows an interface descriptor when the interface belongs to

the HID class. Table 8.11 shows the format of the HID descriptor.

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

bcdHID is the HID class specification.

bCountryCode specifies any special local changes.

bNumDescriptors specifes if there are any additional descriptors associated with this

class.

bDescriptorType is the type of the additional descriptor specified in

bNumDescriptors.

wDescriptorLength is the length of the additional descriptor in bytes.

Table 8.11: HID descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 HID (0�21)

2 bcdHID 2 HID class

4 bCountryCode 1 Special country dependent code

5 bNumDescriptors 1 Number of additional descriptors

6 bDescriptorType 1 Type of additional descriptor

7 wDescriptorLength 2 Length of additional descriptor

www.newnespress.com

425Advanced PIC18 Projects—USB Bus Projects

Table 8.12 shows an example HID descriptor for a mouse device. The length of the

descriptor is 9 bytes (bLength ¼ 9), and the descriptor type is 0�21 (bDescriptorType

¼ 0�21). The HID class is set to 1.1 (bcdHID ¼ 0�0110). The country code is set to

zero (bCountryCode ¼ 0), specifying that there is no special localization with this

device. The number of descriptors is set to 1 (bNumDescriptors ¼ 1) which specifies

that there is one additional descriptor associated with this class. The type of the

additional descriptor is REPORT (bDescriptorType ¼ REPORT), and its length is

52 bytes (wDescriptorLength ¼ 52).

8.4.5 Endpoint Descriptors

Table 8.13 shows the format of the endpoint descriptor.

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

bEndpointAddress is the address of the endpoint.

bmAttributes specifies what type of endpoint it is.

wMaxPacketSize is the maximum packet size.

bInterval specifies how often the endpoint should be polled (in ms).

Table 8.14 shows an example endpoint descriptor for a mouse device. The length of the

descriptor is 7 bytes (bLength ¼ 7), and the descriptor type is 0�05 (bDescriptorType

Table 8.12: Example HID descriptor

Offset Field Value Description

0 bLength 9 Descriptor size is 9 bytes

1 bDescriptorType 0�21 HID (0�21)

2 bcdHID 0�0110 Class version 1.1

4 bCountryCode 0 No special country dependent code

5 bNumDescriptors 1 Number of additional descriptors

6 bDescriptorType REPORT Type of additional descriptor

7 wDescriptorLength 5 Length of additional descriptor

www.newnespress.com

426 Chapter 8

¼ 0�05). The endpoint address is 0�50 (bEndpointAddress ¼ 0�50). The endpoint

is to be used as an interrupt endpoint (bmAttributes ¼ 0�03). The maximum packet size

is set to 2 (wMaxPacketSize ¼ 0�02) to indicate that packets longer than 2 bytes

will not be sent from the endpoint. The endpoint should be polled at least once every

20ms (bInterval ¼ 0�14).

8.5 PIC18 Microcontroller USB Bus Interface

Some of the PIC18 microcontrollers support USB interface directly. For example, the

PIC18F4550 microcontroller contains a full-speed and low-speed compatible USB

interface that allows communication between a host PC and the microcontroller. In the

USB projects in this chapter we will use the PIC18F4550 microcontroller.

Table 8.13: Endpoint descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 Endpoint (0�05)

2 bcdEndpointAddress 1 Endpoint address

4 bmAttributes 1 Type of endpoint

5 wMaxPacketSize 2 Max packet size

6 bInterval 1 Polling interval

Table 8.14: Example endpoint descriptor

Offset Field Size Description

0 bLength 7 Descriptor size in bytes

1 bDescriptorType 0�05 Endpoint (0�05)

2 bcdEndpointAddress 0�50 Endpoint address

4 bmAttributes 0�03 Interrupt type endpoint

5 wMaxPacketSize 0�0002 Max packet size is 2

6 bInterval 0�14 Polling interval is 20ms

www.newnespress.com

427Advanced PIC18 Projects—USB Bus Projects

Figure 8.8 is an overview of the USB section of the PIC18F4550 microcontroller.

PORTC pins RC4 (pin 23) and RC5 (pin 24) are used for USB interface. RC4 is the

USB data D� pin, and RC5 is the USB data Dþ pin. Internal pull-up resistors are

provided which can be disabled (setting UPUEN ¼ 0) if desired and external pull-up

resistors can be used instead. For full-speed operation an internal or external resistor

should be connected to data pin Dþ, and for low-speed operation an internal or external

resistor should be connected to data pin D�.

Operation of the USB module is configured using three control registers, and a total of

twenty-two registers are used to manage the actual USB transactions. Configuration

PIC18FX455/X550 Family

3.3V Regulator

ENVREGEN

FSEN

VUSB

P

P
(Full

Speed)

External 3.3V
Supply(3)

UOE(1)

D+
D−

VM(1)

VP(1)

RCV(1)

VMO(1)

VPO(1)

SPP7: SPP0

CK1SPP
CK2SPP

CSSPP
OESPP

Note

(Low
Speed)

Optional
External

Pull-ups(2)

UPUEN

UTRDIS

UOE

USB Bus

USB Bus

External
Transceiver

FS

Transceiver

USB Clock from the
Oscillator Module

USB Control and
Configuration

USB
SIE

1 Kbyte
USB RAM

Internal Pull-ups

1: This signal is only available if the internal transceiver is disabled (UTRDIS = 1).

2: The internal pull-up resistors should be disabled (UPUEN = 0) if external pull-up resistors are used.

3: Do not enable the internal regulator when using an external 3.3V supply.

Figure 8.8: PIC18F4550 microcontroller USB overview

www.newnespress.com

428 Chapter 8

of these registers is a highly complex task and is not covered in this book. Interested

readers should refer to the PIC18F4550 data sheet and to books on USB internals.

In this chapter we are using the mikroC language USB library functions to

implement USB transactions. The details of these functions are given in the next

section.

8.6 mikroC Language USB Bus Library Functions

The mikroC language supports a number of functions for USB HID-type

communications. Each project based on the USB library should include a descriptor

source file which contains vendor ID and name, product ID and name, report length,

and other relevant information. To create a descriptor source file we can use mikroC’s

integrated USB HID terminal tool (see Tools ! HID Terminal). The default name for

descriptor file is USBdsc.c, but it can be renamed if required. The USBdsc.c file must

be included in USB-based projects either via the mikroC IDE tool, or as an #include

option in the program source file.

The mikroC language supports the following USB bus library functions when a PIC

microcontroller with built-in USB is used (e.g., PIC18F4550), and port pins RC4 and

RC5 are connected to the Dþ and D� pins of the USB connector respectively:

Hid_Enable: This function enables USB communication and requires two

arguments: the read-buffer address and the write-buffer address. It must be called

before any other functions of the USB library, and it returns no data.

Hid_Read: This function receives data from the USB bus and stores it in the receive-

buffer. It has no arguments but returns the number of characters received.

Hid_Write: This function sends data from the write-buffer to the USB bus. The

name of the buffer (the same buffer used in the initialization) and the length of

the data to be sent must be specified as arguments to the function. The function

does not return any data.

Hid_Disable: This function disables the USB data transfer. It has no arguments and

returns no data.

The USB interface of a PIC18F4550 microcontroller is shown in Figure 8.9. As the

figure shows, the interface is very simple. In addition to the power supply and

ground pins, it requires just two pins to be connected to the USB connector. The

microcontroller receives power from the USB port.

www.newnespress.com

429Advanced PIC18 Projects—USB Bus Projects

PROJECT 8.1—USB-Based Microcontroller Output Port

This project describes the design of a USB-based microcontroller output port.

A PIC18F4550 microcontroller is interfaced to a PC through a USB cable. A Visual

Basic program runs on the PC and sends commands to the microcontroller through the

USB bus, asking the microcontroller to set/reset the I/O bits of its PORTB.

The block diagram of the project is shown in Figure 8.10. The circuit diagram is given

in Figure 8.11. The USB lines of the PIC18F4550 microcontroller are connected to a

USB connector. The microcontroller is powered from the USB line (i.e., no external

Figure 8.9: PIC18F4550 USB interface

PIC
18F4550

PC

USB cable

LEDs

Figure 8.10: Block diagram of the project

www.newnespress.com

430 Chapter 8

power supply is required). This makes the design of USB-based products relatively

cheap and very attractive in applications where the total power consumption is below

100mA. The microcontroller is operated from an 8MHz crystal.

The PORTB pins of the microcontroller are connected to LEDs so we can see the state

changes as commands are sent from the PC. This makes testing the project very easy.

Note that a capacitor (about 200nF) should be connected between the VUSB pin (pin 18)

of the microcontroller and the ground for stability.

The project software consists of two parts: the PC software, and the microcontroller

software. Both are described in this section.

The PC Software

The PC software is based on Visual Basic. It is assumed that the user has elementary

knowledge of Visual Basic programming language. Instruction in programming using

the Visual Basic language is beyond the scope of this book, and interested readers

should refer to various books available on this topic.

Figure 8.11: Circuit diagram of the project

www.newnespress.com

431Advanced PIC18 Projects—USB Bus Projects

The source program listing and the executables of the programs are given on the

CDROM distributed with this book. Readers who do not want to do any programming

can use or modify the given programs.

The Visual Basic program in this example consists of a single form as shown in

Figure 8.12. The required PORTB data should be entered in decimal in the text box, and

then the command button CLICK TO SEND should be clicked with the mouse. For

example, entering decimal number 15 will turn on the LEDs connected to port pins

RB0,RB1,RB2, and RB3 of PORTB.

The program sends the entered number to the microcontroller as a packet consisting of

four characters in the following format:

P ¼ nT

where character P indicates the start of data, n is the byte to be sent to PORTB, and T is

the terminator character.

For example, if bits 3 and 4 of PORTB are to be set, i.e., PORTB ¼ “00011000,” then

the Visual Basic program sends packet P ¼ 24T (number 24 is sent as a single binary

byte and not as two ASCII bytes) to the microcontroller over the USB link. The bottom

part of the form displays the connection status.

The Visual Basic program used in this section is based on the USB utility known as

EasyHID USB Wizard, developed by Mecanique, and can be downloaded free of charge

Figure 8.12: The PC Visual Basic form

www.newnespress.com

432 Chapter 8

from their web site (www.mecanique.co.uk). EasyHID is designed to work with USB

2.0, and there is no need to develop a driver, as the XP operating system is shipped

with a HID-based USB driver. This utility generates Visual Basic, Visual Cþþ, or

Borland Delphi template codes for the PC end of a USB application using an HID-type

device interface. In addition, the utility can generate USB template code for the

PIC18F4550 and similar microcontrollers, based on the Proton Development Suite

(www.crownhill.co.uk), Swordish PIC Basic, or PicBasic Pro (www.melabs.com)

programming languages. The generated codes can be expanded with the user code

to implement the required application.

The steps in generating a Visual Basic code template follow:

� Load the EasyHID zip file from the Mecanique web site by clicking on

“Download EasyHID as a Standalone Application”

� Extract the files and install the application by double-clicking on SETUP.

� When the program has started, you should see a form as shown in Figure 8.13.

Enter your data in the fields Company Name, Product Name, and the optional

Serial Number.

Figure 8.13: EasyHID first form

www.newnespress.com

433Advanced PIC18 Projects—USB Bus Projects

� Enter your Vendor ID (VID) and Product ID (PID) as shown in the form in

Figure 8.14. Vendor IDs are unique throughout the world and are issued by the

USB implementers (www.usb.org) at a cost. Mecanique owns a Vendor ID

and can issue you a set of Product IDs at low cost so your products can be

shipped all over the world with unique VID and PID combinations. In this

example, VID ¼ 4660 and PID ¼ 1 are selected for test purposes.

� Clicking Next displays the form shown in Figure 8.15. The important

parameters here are the output and input buffer sizes, which specify

the number of bytes to be sent and received respectively between the

PC and the microcontroller during USB data transactions. In this example,

4 bytes are chosen for both fields (our output is in the format P ¼ nT, which

is 4 bytes).

� In the next form (see Figure 8.16), select a location for the generated

files, choose the microcontroller compiler to be used (this field is not

important, as we are only generating code for Visual Basic (i.e., the PC

Figure 8.14: EasyHID VID and PID entry form

www.newnespress.com

434 Chapter 8

Figure 8.15: EasyHID input-output buffer selection

Figure 8.16: EasyHID output folder, microcontroller type,
and host compiler selection

www.newnespress.com

435Advanced PIC18 Projects—USB Bus Projects

end), choose the microcontroller type, and finally select Visual Basic as the

language to be used.

� Clicking Next generates Visual Basic and microcontroller code templates

in the selected directories (see the final form in Figure 8.17).

Figure 8.18 shows the Visual Basic files generated by the EasyHID wizard. The files

basically consist of a blank form (FormMain.frm), a module file (mcHIDInterface.

BAS), and a project file (USBProject.vbp).

The files generated by the EasyHID wizard have been modified for our project as

follows:

� The blank form has been modified to display the various controls shown in

Figure 8.12.

� Messages are added to the program to display when a USB device is plugged

into or unplugged from the PC.

� A subroutine has been added to read the data entered by the user and then send

this data to the microcontroller over the USB bus when the button CLICK TO

SEND is clicked. This code is as follows:

Figure 8.17: EasyHID last form

www.newnespress.com

436 Chapter 8

Private Sub Command2_Click()

BufferOut(0) ¼ 0 ' first by is always the report ID
BufferOut(1) ¼ Asc("P") ' first data item (“P”)
BufferOut(2) ¼ Asc("¼") ' second data item (“¼”)
BufferOut(3) ¼ Val(txtno) ' third data item (number to send)
BufferOut(4) ¼ Asc("T") ' fourth data item (“T”)

' write the data (don't forget, pass the whole array). . .
hidWriteEx VendorID, ProductID, BufferOut(0)
lblstatus ¼ "Data sent. . ."

End Sub

Figure 8.18: Files generated by the EasyHID wizard

www.newnespress.com

437Advanced PIC18 Projects—USB Bus Projects

BufferOut stores the data to be sent to the microcontroller over the USB bus. Notice that

the first byte of this buffer is the report ID and must be set to 0. The actual data starts

from address BufferOut(1) of the array and the data sent is in the format P ¼ nT as

described before. After the data is sent, the message “Data sent. . .” appears at the

bottom part of the display.

Figure 8.19 shows the final listing of the Visual Basic program. The program is in

two parts: the form USB1.FRM and the module USB1.BAS. The programs should be

loaded and used in the Visual Basic development environment. An installable version

of this program (in folder USB1) comes with the CDROM included with this book

for those who do not have the Visual Basic development environment. This program

should be installed as a normal Windows software installation.

The Microcontroller Software

The microcontroller receives the command P ¼ nT from the PC and sends data byte

n to PORTB. The listing of the microcontroller program (USB.C) without the USB code

is shown in Figure 8.20. The program configures PORTB as digital

output.

Generating the USB Descriptor File

The USB descriptor file must be included at the beginning of the mikroC program.

This descriptor file is created using the Tools menu option of the mikroC compiler

as follows:

� Select Tools -> HID Terminal

� A new form should be displayed. Click on the Descriptor tab and the form

shown in Figure 8.21 is displayed.

� The important parameters to enter here are vendor ID (VID), product ID (PID),

input buffer size, output buffer size, vendor name (VN), and product name

(PN). Note that the VID and PID are in hexadecimal format and that the values

entered here must be the same as the ones used in the Visual Basic program

when generating the code using the EasyHID wizard. Choose VID ¼ 1234

(equivalent to decimal 6460), PID ¼ 1, input buffer size ¼ 4, output buffer

size ¼ 4, and any names you like for the VN and PN fields.

� Check the mikroC compiler.

www.newnespress.com

438 Chapter 8

USB1.FRM

' vendor and product IDs
Private Const VendorID = 4660
Private Const ProductID = 1

' read and write buffers
Private Const BufferInSize = 8
Private Const BufferOutSize = 8
Dim BufferIn(0 To BufferInSize) As Byte
Dim BufferOut(0 To BufferOutSize) As Byte

Private Sub Command1_Click()
 Form_Unload (0)
 End
End Sub

Private Sub Command2_Click()
 BufferOut(0) = 0 ' first by is always the report ID
 BufferOut(1) = Asc("P") ' first data item (“P”)
 BufferOut(2) = Asc("=") ' second data item (“-“)
 BufferOut(3) = Val(txtno) ' third data item (to send over USB)
 BufferOut(4) = Asc("T") ' fourth data item (“T”)

 ' write the data (don't forget, pass the whole array)...
 hidWriteEx VendorID, ProductID, BufferOut(0)
 lblstatus = "Data sent..."
End Sub

' ∗∗∗
' when the form loads, connect to the HID controller - pass
' the form window handle so that you can receive notification
' events...
'∗∗
Private Sub Form_Load()
 ' do not remove!
 ConnectToHID (Me.hwnd)
 lblstatus = "Connected to HID..."
End Sub

'∗∗
' disconnect from the HID controller...
'∗∗
Private Sub Form_Unload(Cancel As Integer)
 DisconnectFromHID
End Sub

'∗∗
' a HID device has been plugged in...

Figure 8.19: Visual Basic program for the PC end of USB link

www.newnespress.com

439Advanced PIC18 Projects—USB Bus Projects

'∗∗
Public Sub OnPlugged(ByVal pHandle As Long)
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle)=
ProductID Then
 lblstatus = "USB Plugged....."
 End If
End Sub

'∗∗

' a HID device has been unplugged...
'∗∗
Public Sub OnUnplugged(ByVal pHandle As Long)
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle) =
ProductID Then
 lblstatus = "USB Unplugged...."
 End If
End Sub

'∗∗

' controller changed notification - called
' after ALL HID devices are plugged or unplugged
'∗∗
Public Sub OnChanged()
 Dim DeviceHandle As Long

 ' get the handle of the device we are interested in, then set
 ' its read notify flag to true - this ensures you get a read
 ' notification message when there is some data to read...
 DeviceHandle = hidGetHandle(VendorID, ProductID)
 hidSetReadNotify DeviceHandle, True
End Sub

'∗∗

' on read event...
'∗∗
Public Sub OnRead(ByVal pHandle As Long)

 ' read the data (don't forget, pass the whole array)...
 If hidRead(pHandle, BufferIn(0)) Then
 ' ∗∗ YOUR CODE HERE ∗∗
 ' first byte is the report ID, e.g. BufferIn(0)
 ' the other bytes are the data from the microcontrolller...
 End If
End Sub

Figure 8.19: (Cont’d)

www.newnespress.com

440 Chapter 8

USB1.BAS

' this is the interface to the HID controller DLL - you should not
' normally need to change anything in this file.
'
' WinProc() calls your main form 'event' procedures - these are currently
' set to..
'
' MainForm.OnPlugged(ByVal pHandle as long)
' MainForm.OnUnplugged(ByVal pHandle as long)
' MainForm.OnChanged()
' MainForm.OnRead(ByVal pHandle as long)

Option Explicit

' HID interface API declarations...
Declare Function hidConnect Lib "mcHID.dll" Alias "Connect" (ByVal pHostWin As
Long) As Boolean
Declare Function hidDisconnect Lib "mcHID.dll" Alias "Disconnect" () As Boolean
Declare Function hidGetItem Lib "mcHID.dll" Alias "GetItem" (ByVal pIndex As
Long) As Long
Declare Function hidGetItemCount Lib "mcHID.dll" Alias "GetItemCount" () As
Long
Declare Function hidRead Lib "mcHID.dll" Alias "Read" (ByVal pHandle As Long,
ByRef pData As Byte) As Boolean
Declare Function hidWrite Lib "mcHID.dll" Alias "Write" (ByVal pHandle As Long,
ByRef pData As Byte) As Boolean
Declare Function hidReadEx Lib "mcHID.dll" Alias "ReadEx" (ByVal pVendorID As
Long, ByVal pProductID As Long, ByRef pData As Byte) As Boolean
Declare Function hidWriteEx Lib "mcHID.dll" Alias "WriteEx" (ByVal pVendorID
As Long, ByVal pProductID As Long, ByRef pData As Byte) As Boolean
Declare Function hidGetHandle Lib "mcHID.dll" Alias "GetHandle" (ByVal
pVendoID As Long, ByVal pProductID As Long) As Long
Declare Function hidGetVendorID Lib "mcHID.dll" Alias "GetVendorID" (ByVal
pHandle As Long) As Long
Declare Function hidGetProductID Lib "mcHID.dll" Alias "GetProductID" (ByVal
pHandle As Long) As Long
Declare Function hidGetVersion Lib "mcHID.dll" Alias "GetVersion" (ByVal
pHandle As Long) As Long
Declare Function hidGetVendorName Lib "mcHID.dll" Alias "GetVendorName"
(ByVal pHandle As Long, ByVal pText As String, ByVal pLen As Long) As Long
Declare Function hidGetProductName Lib "mcHID.dll" Alias "GetProductName"
(ByVal pHandle As Long, ByVal pText As String, ByVal pLen As Long) As Long
Declare Function hidGetSerialNumber Lib "mcHID.dll" Alias"GetSerialNumber"
(ByVal pHandle As Long, ByVal pText As String, ByVal pLen As Long) As Long
Declare Function hidGetInputReportLength Lib "mcHID.dll" Alias
"GetInputReportLength" (ByVal pHandle As Long) As Long
Declare Function hidGetOutputReportLength Lib "mcHID.dll" Alias
"GetOutputReportLength" (ByVal pHandle As Long) As Long

Figure 8.19: (Cont’d)

www.newnespress.com

441Advanced PIC18 Projects—USB Bus Projects

Declare Sub hidSetReadNotify Lib "mcHID.dll" Alias "SetReadNotify" (ByVal
pHandle As Long, ByVal pValue As Boolean)
Declare Function hidIsReadNotifyEnabled Lib "mcHID.dll" Alias
"IsReadNotifyEnabled" (ByVal pHandle As Long) As Boolean
Declare Function hidIsAvailable Lib "mcHID.dll" Alias "IsAvailable" (ByVal
pVendorID As Long, ByVal pProductID As Long) As Boolean

' windows API declarations - used to set up messaging...
Private Declare Function CallWindowProc Lib "user32" Alias "CallWindowProcA"
(ByVal lpPrevWndFunc As Long, ByVal hwnd As Long, ByVal Msg As Long,
ByVal wParam As Long, ByVal lParam As Long) As Long
Private Declare Function SetWindowLong Lib "user32" Alias "SetWindowLongA"
(ByVal hwnd As Long, ByVal nIndex As Long, ByVal dwNewLong As Long) As
Long

' windows API Constants
Private Const WM_APP = 32768
Private Const GWL_WNDPROC = -4

' HID message constants
Private Const WM_HID_EVENT = WM_APP + 200
Private Const NOTIFY_PLUGGED = 1
Private Const NOTIFY_UNPLUGGED = 2
Private Const NOTIFY_CHANGED = 3
Private Const NOTIFY_READ = 4

' local variables
Private FPrevWinProc As Long ' Handle to previous window procedure
Private FWinHandle As Long ' Handle to message window

' Set up a windows hook to receive notification
' messages from the HID controller DLL - then connect
' to the controller
Public Function ConnectToHID(ByVal pHostWin As Long) As Boolean
 FWinHandle = pHostWin
 ConnectToHID = hidConnect(FWinHandle)
 FPrevWinProc = SetWindowLong(FWinHandle, GWL_WNDPROC, AddressOf
WinProc)
End Function

' Unhook from the HID controller and disconnect...
Public Function DisconnectFromHID() As Boolean
 DisconnectFromHID = hidDisconnect
 SetWindowLong FWinHandle, GWL_WNDPROC, FPrevWinProc
End Function

' This is the procedure that intercepts the HID controller messages...
Private Function WinProc(ByVal pHWnd As Long, ByVal pMsg As Long,
ByVal wParam As Long, ByVal lParam As Long) As Long
 If pMsg = WM_HID_EVENT Then

Figure 8.19: (Cont’d)

www.newnespress.com

442 Chapter 8

� Clicking the CREATE button will ask for a folder name and then create

descriptor file USBdsc in this folder. Rename this file to have extension “.C”

(i.e., the full file name should be USBdsc.C) and then copy it to the following

folder (other required mikroC files are already in this folder, so it makes sense

to copy USBdsc.C here as well).

C:\Program Files\Mikroelektronika\mikroC\Examples\EasyPic4
\extra_examples\HID-library\USBdsc.c

Do not modify the contents of file USBdsc.C. A listing of this file is given on the

CDROM.

The microcontroller program listing with the USB code included is shown in

Figure 8.22 (program USB1.C). At the beginning of the program the USB descriptor

file USBdsc.C is included. The operation of the USB link requires the microcontroller

to keep the connection alive by sending keep-alive messages to the PC every several

milliseconds. This is achieved by setting up a timer interrupt service routine using

 Select Case wParam

 ' HID device has been plugged message...
 Case Is = NOTIFY_PLUGGED
 MainForm.OnPlugged (lParam)

 ' HID device has been unplugged
 Case Is = NOTIFY_UNPLUGGED
 MainForm.OnUnplugged (lParam)

 ' controller has changed...
 Case Is = NOTIFY_CHANGED
 MainForm.OnChanged

 ' read event...
 Case Is = NOTIFY_READ
 MainForm.OnRead (lParam)
 End Select

 End If

 ' next...
 WinProc = CallWindowProc(FPrevWinProc, pHWnd, pMsg, wParam, lParam)

End Function

Figure 8.19: (Cont’d)

www.newnespress.com

443Advanced PIC18 Projects—USB Bus Projects

TIMER 0. Inside the timer interrupt service routine the mikroC USB function

HID_InterruptProc is called. Timer TMR0L is reloaded and timer interrupts are

re-enabled just before returning from the interrupt service routine.

Inside the main program PORTB is defined as digital I/O and TRISB is cleared to

0 so all PORTB pins are outputs. All the interrupt registers are then set to their

power-on-reset values for safety. The timer interrupts are then set up. The timer is

operated in 8-bit mode with a prescaler of 256. Although the crystal clock frequency

is 8MHZ, the CPU is operated with a 48MHz clock, as described later. Selecting a

timer value of TMR0L ¼ 100 with a 48MHz clock (CPU clock period of 0.083ms)
gives timer interrupt intervals of:

ð256 � 100Þ � 256 � 0:083ms
or, about 3.3ms. Thus, the keep-alive messages are sent every 3.3ms.

/∗∗∗
 USB BASED MICROCONTROLLER OUTPUT PORT
 ==

In this project a PIC18F4550 type microcontroller is connected to a PC through
the USB link.

A Visual Basic program runs on the PC where the user enters the bits to be set
or cleared on PORTB of the microcontroller. The PC sends a command to the
microcontroller requesting it to set or reset the required bits of the microcontroller
PORTB.

The command sent by the PC to the microcontroller is in the following format:

 P=nT

where n is the byte the microcontroller is requested to send to PORTB of the
microcontroller.

Author: Dogan Ibrahim
Date: September 2007
File: USB.C
∗∗/

void main()
{
 ADCON1 = 0xFF; // Set PORTB to digital I/O
 TRISB = 0; // Set PORTB to outputs
 PORTB = 0; // Clear all outputs
}

Figure 8.20: Microcontroller program without the USB code

www.newnespress.com

444 Chapter 8

The USB port is then enabled by calling function Hid_Enable. The program then enters

an indefinite loop and reads data from the USB port with Hid_Read. When 4 bytes are

received at the correct format (i.e., byte 0 ¼ “P,” byte 1 ¼ “¼”, and byte 3 ¼ “T”) then

the data byte is read from byte 2 and sent to PORTB of the microcontroller.

It is important to note that when data is received using the Hid_Read function, the

function returns the number of bytes received. In addition, the first byte received is the

first actual data byte and not the report ID.

Microcontroller Clock

The USB module of the PIC18F4550 microcontroller requires a 48MHz clock.

In addition, the microcontroller CPU requires a clock that can range from 0 to 48MHz.

In this project the CPU clock is set to be 48MHz.

There are several ways to provide the required clock pulses.

Figure 8.21: Creating the USBdsc descriptor file

www.newnespress.com

445Advanced PIC18 Projects—USB Bus Projects

/∗∗∗
 USB BASED MICROCONTROLLER OUTPUT PORT
 ==

In this project a PIC18F4550 type microcontroller is connected
to a PC through the USB link.

A Visual Basic program runs on the PC where the user enters the bits to be set or
cleared on PORTB of the microcontroller. The PC sends a command to the
microcontroller requesting it to set or reset the required bits of the microcontroller
PORTB.

A 8MHz crystal is used to operate the microcontroller. The actual CPU clock is raised
to 48MHz by setting configuration bits. Also, the USB module is operated with
48MHz.

The command sent by the PC to the microcontroller is in the following format:

 P=nT

where n is the byte the microcontroller is requested to send to PORTB of the
microcontroller.

This program includes the USB code.

Author: Dogan Ibrahim
Date: September 2007
File: USB1.C
∗∗/

#include "C:\Program
Files\Mikroelektronika\mikroC\Examples\EasyPic4\extra_examples\HID-
library\USBdsc.c"

unsigned char Read_buffer[64];
unsigned char Write_buffer[64];
unsigned char num;
//
// Timer interrupt service routine
//
void interrupt()
{
 HID_InterruptProc(); // Keep alive
 TMR0L = 100; // Re-load TMR0L
 INTCON.TMR0IF = 0; // Re-enable TMR0 interrupts
}

//
// Start of MAIN program

Figure 8.22: Microcontroller program with USB code

www.newnespress.com

446 Chapter 8

//
void main()
{

 ADCON1 = 0xFF; // Set PORTB to digital I/O
 TRISB = 0; // Set PORTB to outputs
 PORTB = 0; // Clear all outputs
//
// Set interrupt registers to power-on defaults
// Disable all interrupts
//
 INTCON=0;
 INTCON2=0xF5;
 INTCON3=0xC0;
 RCON.IPEN=0;
 PIE1=0;
 PIE2=0;
 PIR1=0;
 PIR2=0;
//
// Configure TIMER 0 for 3.3ms interrupts. Set prescaler to 256
// and load TMR0L to 100 so that the time interval for timer
// interrupts at 48MHz is 256∗(256-100)∗0.083 = 3.3ms
//
// The timer is in 8-bit mode by default
//
 T0CON = 0x47; // Prescaler = 256
 TMR0L = 100; // Timer count is 256-156 = 100
 INTCON.TMR0IE = 1; // Enable T0IE
 T0CON.TMR0ON = 1; // Turn Timer 0 ON
 INTCON = 0xE0; // Enable interrupts

//
// Enable USB port
//
 Hid_Enable(&Read_buffer, &Write_buffer);
 Delay_ms(1000);
 Delay_ms(1000);
//
// Read from the USB port. Number of bytes read is in num
//

 for(;;) // do forever
{
 num=0;
 while(num != 4) // Get 4 characters
 {num = Hid_Read();
 }
 if(Read_buffer[0] == 'P' && Read_buffer[1] == '=' && Read_buffer[3] == 'T')
 {
 PORTB = Read_buffer[2];
 }
 }
 Hid_Disable();

}

Figure 8.22: (Cont’d)

www.newnespress.com

Figure 8.23 shows part of the PIC18F4550 clock circuit. The circuit consists of a

1:1 – 1:12 PLL prescaler and multiplexer, a 4:96MHz PLL, a 1:2 – 1:6 PLL postscaler,

and a 1:1 – 1:4 oscillator postscaler. Assuming the crystal frequency is 8MHz and

we want to operate the microcontroller with a 48MHz clock, and also remembering

that a 48MHz clock is required for the USB module, we should make the following

choices in the Edit Project option of the mikroC IDE:

� Set _PLL_DIV2_1L so the 8MHz clock is divided by 2 to produce 4MHZ at

the output of the PLL prescaler multiplexer. The output of the 4:96MHZ PLL

is now 96MHz. This is further divided by 2 to give 48MHz at the input of

multiplexer USBDIV.

PIC18F2455/2550/4455/4550

PLLDIV

P
LL

 P
re

sc
al

er

M
U

X

P
L

L
 P

o
st

sc
al

er

(4 MHz Input Only)

USB Clock Source

USBDIV

FSEN

CPU

1

0

Peripherals

USB
Peripheral

96 MHz
PLL

CPUDIV

CPUDIV

OSCCON<6:4>

FOSC3:FOSC0
IDLEN

M
U

X

T1OSC

Internal Oscillator

Secondary Oscillator

O
sc

ill
at

or
 P

os
ts

ca
le

r

XT, HS, EC, ECIO

T1OSO

T1OSI

T1OSCEN
Enable
Oscillator

Primary Oscillator

Sleep

OSC2

OSC1

Primary
Clock

HSPLL, ECPLL,
XTPLL, ECPIO

111
÷ 12

0
1÷ 2

÷ 10

÷ 6

÷ 5

÷ 4

÷ 3

÷ 2

÷ 6

÷ 4

+ 4

÷ 3

÷ 2÷ 4

÷ 3

÷ 2

÷ 1

÷ 1

110

101

100

011

010

001

11

10

01

0011

10

01

00

1
0

000

Figure 8.23: PIC18F4550 microcontroller clock

www.newnespress.com

448 Chapter 8

� Check _USBDIV_2_1L to provide a 48MHz clock to USB module and to select

�2 for the PLL postscaler.

� Check CPUDIV_OSC1_PLL2_1L to select PLL as the clock source.

� Check _FOSC_HSPLL_HS_1H to select a 48MHz clock for the CPU.

� Set the CPU clock to 48MHz in mikroC IDE (using Edit Project).

The clock bits selected for the 48MHz USB operation with a 48MHz CPU clock are

shown in Figure 8.24.

Setting other configuration bits in addition to the clock bits is recommended.

The following list gives all the bits that should be set in the Edit Project option of

the IDE (most of these settings are the power-on-reset values of the bits):

PLLDIV_2_1L
CPUDIV_OSC1_PLL2_1L
USBDIV_2_1L

FOSC_HSPLL_HS_1H
FCMEM_OFF_1H
IESO_OFF_1H

PWRT_ON_2L
BOR_ON_2L
BORV_43_2L
VREGEN_ON_2L

WDT_OFF_2H
WDTPS_256_2H

MCLRE_ON_3H
LPT1OSC_OFF_3H
PBADEN_OFF_3H
CCP2MX_ON_3H

STVREN_ON_4L
LVP_OFF_4L
ICPRT_OFF_4L
XINST_OFF_4L
DEBUG_OFF_4L

www.newnespress.com

449Advanced PIC18 Projects—USB Bus Projects

Figure 8.24: Selecting clock bits for USB operation

www.newnespress.com

450 Chapter 8

Testing the Project

Testing the project is relatively easy. The steps are:

� Construct the hardware

� Load the program (Figure 8.22) into the PIC18F4550 microcontroller

� Copy or run the PC-based Visual Basic program

When the microcontroller is connected to one of the USB ports of the PC, a message

should be visible at the bottom right-hand corner of the screen similar to the one in

Figure 8.25. This message shows that the new USB HID device has been plugged

in and is recognized by the PC.

In addition, the device manager display should show an HID-compliant device and

a USB human interface device as in Figure 8.26. The properties of these drivers

can be displayed to make sure the VIP is 0 � 1234 and the PID is 1.

Enter data into the Visual Basic form and click the CLICK TO SEND button. The

corresponding microcontroller LEDs should turn on. For example, entering 3 should

turn on LEDs 0 and 1.

Figure 8.25: USB connection message

www.newnespress.com

451Advanced PIC18 Projects—USB Bus Projects

Using a USB Protocol Analyzer

If for any reason the project is not working, a USB protocol analyzer can be used to

check the data transactions on the USB bus. There are many USB protocol analyzers on

the market. Some expensive professional ones are hardware-based and require the

purchase of special hardware. Most low-cost USB protocol analyzers are software-

based. Two such tools are described here briefly.

UVCView

UVCView is a free Microsoft product that runs on a PC and displays the descriptors of a

USB device after it is plugged in. Figure 8.27 shows the UVCView display after the

Figure 8.26: Device manager display showing the USB devices

www.newnespress.com

452 Chapter 8

microcontroller is plugged into the PC. The left side of the display shows the USB ports

available in the system. Clicking on a device in this part of the display shows descriptor

details of the device in the middle of the screen. In Figure 8.27 the descriptors of

our device are shown. The UVCView display is useful when various fields of the

device descriptors must be checked.

USBTrace

USBTrace is a software USB protocol analyzer developed by SysNucleus (www.

sysnucleus.com) and runs on a PC. The software monitors the USB ports of the PC it is

running on and displays all the transactions on the bus. This software can be an

invaluable tool when all the transactions on the line must be monitored and logged.

Figure 8.27: UVCView display of the project

www.newnespress.com

453Advanced PIC18 Projects—USB Bus Projects

A limited-time demo version of USBTrace is available on the manufacturer’s web site.

An example using the program is given in this section to show the data sent from the PC

to the microcontroller:

� Start the USBTrace program.

� Connect the microcontroller to the USB port of the PC.

� Select the device from the left side of the display by checking the appropriate

box.

� Start the Visual Basic program.

� Start capturing data by clicking the green arrow at the top left of the USBTrace

menu. You should see the START OF LOG message in the middle part of the

screen

� Enter number 3 on the Visual Basic form to turn on LEDs 0 and 1 of PORTB,

and click the CLICK TO SEND button.

� You should see data packets in the middle of the screen as shown in

Figure 8.28.

� Move the cursor over the first packet. This is the packet sent from the PC to the

microcontroller (OUT packet). A pop-up window will appear, and information

about this packet will be displayed, with the data sent appearing in hexadecimal

Figure 8.28: Transactions on the bus when CLICK TO SEND is clicked

www.newnespress.com

454 Chapter 8

at the bottom of the display, as shown in Figure 8.29. Note that the data consists

of the following 4 bytes:

50 3D 03 54
P ¼ 3T

which correspond to the ASCII string P ¼ 3T. This is the actual packet sent from the PC

to the microcontroller.

USBTrace can also display the device descriptors in detail, as shown in the lower part

of the screen in Figure 8.29.

Figure 8.29: Displaying contents of the packet

www.newnespress.com

455Advanced PIC18 Projects—USB Bus Projects

Using the HID Terminal of mikroC

The mikroC IDE provides a USB terminal interface that can be used for sending and

receiving data over the USB bus. This program can be used instead of the Visual Basic

program to test the USB interface. The steps are as follows:

� In mikroC IDE, Select Tools -> HID Terminal

� Plug the microcontroller into the PC’s USB port

� You should see the product ID under HID Devices:

○ To turn on LEDs 0,1,4, and 5, type P ¼ 3T under Communication and click

the SEND button as shown in Figure 8.30 (remember that the ASCII value

of number 3 has the bit pattern “0011 0011”)

○ LEDs 0,1,4, and 5 of the microcontroller should turn on

PROJECT 8.2—USB-Based Microcontroller
Input/Output

This project is very similar to Project 8.1, except that it includes two-way

communication, while in Project 8.1 data to be output on PORTB was sent to the

Figure 8.30: Using the HID terminal to send data to a USB device

www.newnespress.com

456 Chapter 8

microcontroller. In addition, PORTB data is received from the microcontroller and

displayed on the PC.

The PC sends two commands to the microcontroller:

� Command P ¼ nT requests the microcontroller to send data byte n to PORTB.

� Command P ¼ ?? requests the microcontroller to read its PORTB data and

send it as a byte to the PC. The PC then displays this data on the screen. The

microcontroller sends its data in the familiar format P ¼ nT.

The hardware of this project is the same as the hardware for the previous project, shown

in Figure 8.11, where eight LEDs are connected to PORTB of a PIC18F4550

microcontroller which is operated from a 8MHz crystal.

A single form is used in this project, and Figure 8.31 shows the format of this form.

The upper part of the form is the same as in Project 8.1, i.e., sending data to PORTB

of the microcontroller. A text box and a command button named CLICK TO

RECEIVE are also placed on the form. When the button is pressed, the PC sends

command P ¼ ?? to the microcontroller. The microcontroller reads its PORTB data

and sends it in the format P ¼ nT to the PC where it is displayed in the text box.

Figure 8.31: Visual Basic form of the project

www.newnespress.com

457Advanced PIC18 Projects—USB Bus Projects

Figure 8.32 shows the mikroC program of the project. The program is named

USB2.C and is very similar to the one for the previous project. But here, in

addition, when the command P ¼ ?? is received from the PC, the microcontroller

reads PORTB data and sends it to the PC in the format using the mikroC function

Hid_Write.

The program checks the format of the received command. For P ¼ ?? type commands,

PORTB is configured as inputs, PORTB data is read into Write_buffer[2], and

Write_buffer is sent to the PC, where Write_buffer[0] ¼ “P,” Write_buffer[1] ¼ “¼”,

and Write_buffer[3] ¼ “T” as follows:

if(Read_buffer [0] ¼¼ ‘P‘ && Read_buffer [1] ¼¼ ‘¼‘ &&
Read_buffer [2] ¼¼ ‘?‘ && Read_Buffer [3] ¼¼ ‘?‘)
{
TRISB ¼ 0�FF;
Write_buffer [0] ¼ ‘P‘; Write_buffer [1] ¼ ‘¼‘; Write_buffer [2] ¼

PORTB; Write_buffer [3] ¼ ‘T‘;
Hid_Write(&Write_buffer,4);
}

For P ¼ nT type commands, PORTB is configured as outputs and Read_buffer[2] is

sent to PORTB as follows:

if(Read_buffer [0] ¼¼ ‘P‘ && Read_buffer [1] ¼¼ ‘¼‘ &&
Read_buffer [3] ¼¼ ‘T‘)
{
TRISB ¼ 0;
PORTB ¼ Read_buffer [2];
}

The microcontroller clock should be set as in Project 8.1 (i.e., both the CPU and the

USB module should have 48MHz clocks). The other configurations bits should also be

set as described in the previous problem.

Testing the Project

The project can be tested using one of the methods described in the previous project.

If you are using the Visual Basic program, send data to the microcontroller and make

sure the correct LEDs are turned on. Then connect some of the PORTB pins to

logic 0 and click the CLICK TO RECEIVE button. The microcontroller will read its

PORTB data and send it to the PC, where it will be displayed on the PC screen.

www.newnespress.com

458 Chapter 8

/∗∗∗
 USB BASED MICROCONTROLLER INPUT/OUTPUT PORT
 ==

In this project a PIC18F4550 type microcontroller is connected
to a PC through the USB link.

A Visual Basic program runs on the PC where the user enters the
bits to be set or cleared on PORTB of the microcontroller. The
PC sends a command to the microcontroller requesting it to set
or reset the required bits of the microcontroller PORTB. In addition,
the PORTB data can be requested from the microcontroller and displayed
on the PC.

The microcontroller is operated from a 8MHz crystal, but the CPU
clock frequency is increased to 48MHz. Also, the USB module operates
with 48MHz.

The commands are:

From PC to microcontroller: P=nT (Send data byte n to PORTB)
 P=?? (Give me PORTB data)

From microcontroller to PC: P=nT (Here is my PORTB data)

Author: Dogan Ibrahim
Date: September 2007
File: USB2.C
∗∗∗/

#include "C:\Program
Files\Mikroelektronika\mikroC\Examples\EasyPic4\extra_examples\HID-
library\USBdsc.c"

unsigned char Read_buffer[64];
unsigned char Write_buffer[64];
unsigned char num,i;
//
// Timer interrupt service routine
//
void interrupt()
{
 HID_InterruptProc(); // Keep alive
 TMR0L = 100; // Reload TMR0L
 INTCON.TMR0IF = 0; // Re-enable TMR0 interrupts
}

//
// Start of MAIN program

Figure 8.32: mikroC program listing of the project
(Continued)

www.newnespress.com

459Advanced PIC18 Projects—USB Bus Projects

//
void main()
{

 ADCON1 = 0xFF; // Set PORTB to digital I/O
 TRISB = 0; // Set PORTB to outputs
 PORTB = 0; // PORTB all 0s to start with

//
// Set interrupt registers to power-on defaults
// Disable all interrupts
//
 INTCON=0;
 INTCON2=0xF5;
 INTCON3=0xC0;
 RCON.IPEN=0;
 PIE1=0;
 PIE2=0;
 PIR1=0;
 PIR2=0;
//
// Configure TIMER 0 for 20ms interrupts. Set prescaler to 256
// and load TMR0L to 156 so that the time interval for timer
// interrupts at 8MHz is 256∗156∗0.5 = 20ms
//
// The timer is in 8-bit mode by default
//
 T0CON = 0x47; // Prescaler = 256
 TMR0L = 100; // Timer count is 256-156 = 100
 INTCON.TMR0IE = 1; // Enable T0IE
 T0CON.TMR0ON = 1; // Turn Timer 0 ON
 INTCON = 0xE0; // Enable interrupts

//
// Enable USB port
//
 Hid_Enable(&Read_buffer, &Write_buffer);
 Delay_ms(1000);
 Delay_ms(1000);
//
// Read from the USB port. Number of bytes read is in num
//

 for(;;) // do forever
{
 num=0;
 while(num != 4)
 {num = Hid_Read();
 }

Figure 8.32: (Cont’d)

www.newnespress.com

460 Chapter 8

The project can also be tested using the HID terminal of mikroC IDE. The steps are:

� Start the HID terminal.

� Send a command to the microcontroller to turn on the LEDs (e.g., P ¼ 1T) and

make sure the correct LEDs are turned on (in this case, LEDs 0, 4, and 5 should

turn on, corresponding to the data pattern “0011 0001”).

� Connect bits 2 and 3 of PORTB to logic 1 and the other six bits to ground.

� Send command P ¼ ?? to the microcontroller.

� The PC will display the number 12, corresponding to bit pattern “0000 1100”.

The Visual Basic program listing of the project is given in Figure 8.33. Only the main

program is given here, as the library declarations are the same as in Figure 8.19. The

program jumps to subroutine OnRead when data arrives at the USB bus. The format

of this data is checked to be in the format P ¼ nT, and if the format is correct, the

received data byte is displayed in the text box.

An installable version of the Visual Basic PC program is available in folder USB2

on the CDROM included with this book.

 if(Read_buffer[0] == 'P' && Read_buffer[1] == '=' &&
 Read_buffer[2] == '?' && Read_Buffer[3] == '?')
 {
 TRISB = 0xFF;
 Write_buffer[0] = 'P'; Write_buffer[1] = '=';
 Write_buffer[2] = PORTB; Write_buffer[3] = 'T';
 Hid_Write(&Write_buffer,4);
 }
 else
 {
 if(Read_buffer[0] == 'P' && Read_buffer[1] == '=' &&
 Read_buffer[3] == 'T')
 {
 TRISB = 0;
 PORTB = Read_buffer[2];
 }
 }
 }
 Hid_Disable();

}

Figure 8.32: (Cont’d)

www.newnespress.com

461Advanced PIC18 Projects—USB Bus Projects

' vendor and product IDs
Private Const VendorID = 4660
Private Const ProductID = 1

' read and write buffers
Private Const BufferInSize = 8
Private Const BufferOutSize = 8
Dim BufferIn(0 To BufferInSize) As Byte
Dim BufferOut(0 To BufferOutSize) As Byte

Private Sub Command1_Click()
 Form_Unload (0)
End
End Sub

Private Sub Command2_Click()
 BufferOut(0) = 0 ' first byte is always the report ID
 BufferOut(1) = Asc("P") ' first data item (“P”)
 BufferOut(2) = Asc("=") ' second data item (“=”)
 BufferOut(3) = Val(txtno) ' third data item (data)
 BufferOut(4) = Asc("T") ' fourth data item (“T”)

 ' write the data (don't forget, pass the whole array)...
 hidWriteEx VendorID, ProductID, BufferOut(0)
 lblstatus = "Data sent..."

End Sub
' ∗∗

' Send command P=?? to the microcontroller to request its PORTB data
'∗∗∗

∗
Private Sub Command3_Click()
 BufferOut(0) = 0 ' first byte is always the report ID
 BufferOut(1) = Asc("P") ' first data item ("P")
 BufferOut(2) = Asc("=") ' second data item ("=")
 BufferOut(3) = Asc("?") ' third data item ("?")
 BufferOut(4) = Asc("?") ' fourth data item ("?")

 ' write the data (don't forget, pass the whole array)...
 hidWriteEx VendorID, ProductID, BufferOut(0)
 lblstatus = "Data requested..."

End Sub

' ∗∗
' when the form loads, connect to the HID controller - pass
' the form window handle so that you can receive notification
' events...
'∗∗∗
Private Sub Form_Load()

Figure 8.33: Visual Basic program listing of the project

www.newnespress.com

462 Chapter 8

 ' do not remove!
 ConnectToHID (Me.hwnd)
 lblstatus = "Connected to HID..."
End Sub

'∗∗∗

' disconnect from the HID controller...
'∗∗∗
Private Sub Form_Unload(Cancel As Integer)
 DisconnectFromHID
End Sub

'∗∗∗

' a HID device has been plugged in...
'∗∗∗
Public Sub OnPlugged(ByVal pHandle As Long)
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle) =
ProductID Then
 lblstatus = "USB Plugged....."
 End If
End Sub

'∗∗∗

' a HID device has been unplugged...
'∗∗∗
Public Sub OnUnplugged(ByVal pHandle As Long)
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle) =
ProductID Then
 lblstatus = "USB Unplugged...."
 End If
End Sub

'∗∗∗

' controller changed notification - called
' after ALL HID devices are plugged or unplugged
'∗∗∗
Public Sub OnChanged()
 Dim DeviceHandle As Long

 ' get the handle of the device we are interested in, then set
 ' its read notify flag to true - this ensures you get a read
 ' notification message when there is some data to read...
 DeviceHandle = hidGetHandle(VendorID, ProductID)
 hidSetReadNotify DeviceHandle, True
End Sub

'∗∗∗

' on read event...
'∗∗∗
Public Sub OnRead(ByVal pHandle As Long)

Figure 8.33: (Cont’d)

www.newnespress.com

PROJECT 8.3—USB-Based Ambient Pressure
Display on the PC

In this project, an ambient atmospheric pressure sensor is connected to a PIC18F4550

microcontroller, and the measured pressure is sent and displayed on a PC every second

using a USB link.

An MPX4115A-type pressure sensor is used in this project. This sensor generates an

analog voltage proportional to the ambient pressure. The device is available in either a

6-pin or an 8-pin package.

The pin configuration of a 6-pin sensor is:

Pin Description
1 Output voltage
2 Ground
3 þ5V supply
4–6 not used

and for an 8-pin sensor:

Pin Description
1 not used
2 þ5V supply
3 Ground
4 Output voltage
5–8 not used

 ' read the data (don't forget, pass the whole array)...
 If hidRead(pHandle, BufferIn(0)) Then
 ' The data is received in the format: P=nT where the first byte
 ' is the report ID. i.e. BufferIn(0)=reportID, BufferIn(0)="P" and so on
 ' Check to make sure that received data is in correct format
 If (BufferIn(1) = Asc("P") And BufferIn(2) = Asc("=") And
 BufferIn(4) = Asc("T")) Then
 txtreceived = Str$(BufferIn(3))
 lblstatus = "Data received..."
 End If
 End If
End Sub

Figure 8.33: (Cont’d)

www.newnespress.com

464 Chapter 8

Figure 8.34 shows pictures of this sensor with both types of pin configurations.

The output voltage of the sensor is determined by:

V ¼ 5:0 � ð0:009 � kPa � 0:095Þ ð8:1Þ

or

kPa ¼
V

5:0
þ 0:095

0:009
ð8:2Þ

where

kPa ¼ atmospheric pressure (kilopascals)

V ¼ output voltage of the sensor (V)

The atmospheric pressure measurements are usually shown in millibars. At sea level

and at 15�C the atmospheric pressure is 1013.3 millibars. In Equation (8.2) the

pressure is given in kPa. To convert kPa to millibars we have to multiply Equation (8.2)

by 10 to give:

mb ¼ 10 �
V

5:0
þ 0:095

0:009
ð8:3Þ

or

mb ¼ 2:0V þ 0:95

0:009
ð8:4Þ

Figure 8.34: MPX4115A pressure sensors

www.newnespress.com

465Advanced PIC18 Projects—USB Bus Projects

Figure 8.35 shows the variation of the output voltage of MPX4115A sensor as the

pressure varies. We are interested in the range of pressure between 800 and 1100

millibars.

The steps to calculate the pressure in millibars are:

� Read the output voltage of the pressure sensor using one of the A/D channels of

the microcontroller

� Use Equation (8.4) to convert the voltage into pressure in millibars

The block diagram of the project is shown in Figure 8.36.

0

1

2

3

4

5

Millibars

V
ol

ts

200 300 400 500 600 700 800 900 1000 1100

Figure 8.35: Variation of sensor output voltage with pressure

MPX
4115

PIC
18F4550 PC

USB cable

Pressure sensor

Figure 8.36: Block diagram of the project

www.newnespress.com

466 Chapter 8

The circuit diagram of the project is shown in Figure 8.37. The sensor output is

connected to analog input AN0 of the microcontroller. As in Project 8.2, the USB

connector is connected to port pins RC4 and RC5 and the microcontroller is operated

from an 8MHz crystal.

The program on the PC is based on Visual Basic, as in the previous projects. A single

form is used, as shown in Figure 8.38, to display the pressure in millibars every

second.

The microcontroller program listing (named PRESSURE.C) of the project is given in

Figure 8.39. At the beginning of the main program the PORTA pins are defined as

analog inputs by clearing ADCON1 to 0 and setting port pins as inputs. Then the

interrupt registers are set to their default power-on values. Timer interrupt TMR0 is set

Figure 8.37: Circuit diagram of the project

www.newnespress.com

467Advanced PIC18 Projects—USB Bus Projects

to generate an interrupt every 3.3ms to keep the USB bus alive. The USB port of the

microcontroller is then enabled, and ADCON2 is initialized by setting the A/D clock

frequency to Fosc/64.

An endless loop is formed using a for statement. Inside this loop the pressure sensor

data is read into variable Vin and then converted into physical voltage in millivolts and

stored in variable mV. The atmospheric pressure is then calculated using Equation (8.4)

and stored in variable Pint as a long integer. The mikroC function LongToStr converts

this integer into a string in array op. Any leading spaces are removed from this array,

and the resulting pressure is stored in a character array called Pressure. The mikroC

USB function Hid_Write is then called to send the pressure data to the USB bus as

4-character data. The program then waits for one second, and the above process is

repeated forever.

An 8MHz crystal is used to provide clock pulses to the microcontroller. The

microcontroller CPU clock and the USB module are operated at 48MHz, and

the clock and configuration register settings are as in the other projects in this

chapter.

Figure 8.38: Visual Basic form to display pressure

www.newnespress.com

468 Chapter 8

/∗∗∗
 USB BASED ATMOSPHERIC PRESSURE DISPLAY ON PC
 ===

In this project a PIC18F4550 type microcontroller is connected
to a PC through the USB link.

In addition, a MPX4115A type pressure sensor IC is connected to analog port AN0 of
the microcontroller. The microcontroller reads the atmospheric presure and sends it to
the PC every second. The PC displays the pressure on the screen.

A Visual Basic program runs on the PC which reads the pressure from the USB port
and then displays it on a form.

The microcontroller is operated from a 8MHz crystal, but the CPU clock frequency is
increased to 48MHz. Also, the USB module operates with 48MHz.

The pressure is sent to the PC in millibars as a 4 digit integer
number.

Author: Dogan Ibrahim
Date: September 2007
File: PRESSURE.C
∗∗∗/

#include "C:\Program
Files\Mikroelektronika\mikroC\Examples\EasyPic4\extra_examples\HID-
library\USBdsc.c"

unsigned char num,i,j;
unsigned long Vin, Pint;
unsigned char op[12], Pressure[4], Read_buffer[4];
float mV,V,Pmb;

//
// Timer interrupt service routine
//
void interrupt()
{
 HID_InterruptProc(); // Keep alive
 TMR0L = 100; // Reload TMR0L
 INTCON.TMR0IF = 0; // Re-enable TMR0 interrupts
}

//
// Start of MAIN program
//
void main()
{

Figure 8.39: Microcontroller program of the project
(Continued)

www.newnespress.com

469Advanced PIC18 Projects—USB Bus Projects

 ADCON1 = 0; // Set inputs as analog, Ref=+5V
 TRISA = 0xFF; // Set PORT A as inputs
//
// Set interrupt registers to power-on defaults
// Disable all interrupts
//
 INTCON=0;
 INTCON2=0xF5;
 INTCON3=0xC0;
 RCON.IPEN=0;
 PIE1=0;
 PIE2=0;
 PIR1=0;
 PIR2=0;
//
// Configure TIMER 0 for 3.3ms interrupts. Set prescaler to 256
// and load TMR0L to 156 so that the time interval for timer
// interrupts at 48MHz is 256∗156∗0.083 = 3.3ms
//
// The timer is in 8-bit mode by default
//
 T0CON = 0x47; // Prescaler = 256
 TMR0L = 100; // Timer count is 256-156 = 100
 INTCON.TMR0IE = 1; // Enable T0IE
 T0CON.TMR0ON = 1; // Turn Timer 0 ON
 INTCON = 0xE0; // Enable interrupts

//
// Enable USB port
//
 Hid_Enable(&Read_buffer, &Pressure);
 Delay_ms(1000);
 Delay_ms(1000);

//
// Configure A/D converter. AN0 is used in this project
//
 ADCON2 = 0xA6; // A/D clock = Fosc/64, 8TAD
//
// Endless loop. Read pressure from the A/D converter,
// convert into millibars and send to the PC over the
// USB port every second
//
 for(;;) // do forever
{
 Vin = Adc_Read(0); // Read from channel 0 (AN0)
 mV = (Vin ∗ 5000.0) / 1024.0; // In mv=Vin x 5000/1024
 V = mV /1000.0; // Pressure in Volts
 Pmb = (2.0∗V + 0.95) / 0.009; // Pressure in mb

Figure 8.39: (Cont’d)

www.newnespress.com

470 Chapter 8

The PC program, based on Visual Basic, is called PRESSURE. Subroutine OnRead

receives the data arriving at the USB port of the PC and then displays it on the screen

form. The program does not send any data to the USB bus. The program listing (except

the global variable declarations) is given in Figure 8.40.

Figure 8.41 shows a typical output from the Visual Basic program, displaying the

atmospheric pressure.

An installable version of the Visual Basic program is provided on the CDROM that

comes with this book, in folder PRESSURE.

 Pint = (int)Pmb; // As an integer number
 LongToStr(Pint,op); // Convert to string in "op"
//
// Remove leading blanks
//
 for(j=0; j<4; j++)Pressure[j]=' ';

 j=0;
 for(i=0;i<=11;i++)
 {
 if(op[i] != ' ') // If a blank
 {
 Pressure[j]=op[i];
 j++;
 }
 }
//
// Send pressure (in array Pressure) to the PC
//
 Hid_Write(&Pressure,4); // Send to USB as 4 characters
 Delay_ms(1000); // Wait 1 second
 }
 Hid_Disable();

}

Figure 8.39: (Cont’d)

www.newnespress.com

471Advanced PIC18 Projects—USB Bus Projects

' vendor and product IDs
Private Const VendorID = 4660
Private Const ProductID = 1

' read and write buffers
Private Const BufferInSize = 8
Private Const BufferOutSize = 8
Dim BufferIn(0 To BufferInSize) As Byte
Dim BufferOut(0 To BufferOutSize) As Byte

Private Sub Command1_Click()
 Form_Unload (0)
End
End Sub

' ∗∗∗

' when the form loads, connect to the HID controller - pass
' the form window handle so that you can receive notification
' events...
'∗∗
Private Sub Form_Load()
 ' do not remove!
 ConnectToHID (Me.hwnd)
 lblstatus = "Connected to HID..."
End Sub

'∗∗

' disconnect from the HID controller...
'∗∗
Private Sub Form_Unload(Cancel As Integer)
 DisconnectFromHID
End Sub

'∗∗

' a HID device has been plugged in...
'∗∗
Public Sub OnPlugged(ByVal pHandle As Long)
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle) =
ProductID Then
 lblstatus = "USB Plugged....."
 End If
End Sub

Figure 8.40: Visual Basic program of the project

www.newnespress.com

472 Chapter 8

 lblstatus = "USB Unplugged...."
 End If
End Sub

'∗∗

' controller changed notification - called
' after ALL HID devices are plugged or unplugged
'∗∗
Public Sub OnChanged()
 Dim DeviceHandle As Long

 ' get the handle of the device we are interested in, then set
 ' its read notify flag to true - this ensures you get a read
 ' notification message when there is some data to read...
 DeviceHandle = hidGetHandle(VendorID, ProductID)
 hidSetReadNotify DeviceHandle, True
End Sub

'∗∗

' on read event...
'∗∗
Public Sub OnRead(ByVal pHandle As Long)
 Dim pressure As String

 If hidRead(pHandle, BufferIn(0)) Then
 ' The first byte is the report ID. i.e. BufferIn(0)=reportID
 pressure = Chr(BufferIn(1)) & Chr(BufferIn(2)) & Chr(BufferIn(3)) &
Chr(BufferIn(4))
 txtno = pressure
 End If
End Sub

' a HID device has been unplugged...
'∗∗
Public Sub OnUnplugged(ByVal pHandle As Long)
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle) =
ProductID Then

∗∗

Figure 8.40: (Cont’d)

www.newnespress.com

473Advanced PIC18 Projects—USB Bus Projects

Figure 8.41: Typical output from the Visual Basic program

www.newnespress.com

474 Chapter 8

CHAP T E R 9

Advanced PIC18 Projects—CAN
Bus Projects

The Controller Area Network (CAN) is a serial bus communications protocol developed

by Bosch (an electrical equipment manufacturer in Germany) in the early 1980s.

Thereafter, CAN was standardized as ISO-11898 and ISO-11519, establishing itself as

the standard protocol for in-vehicle networking in the auto industry. In the early days of

the automotive industry, localized stand-alone controllers had been used to manage

various actuators and electromechanical subsystems. By networking the electronics in

vehicles with CAN, however, they could be controlled from a central point, the engine

control unit (ECU), thus increasing functionality, adding modularity, and making

diagnostic processes more efficient.

Early CAN development was mainly supported by the vehicle industry, as it was used in

passenger cars, boats, trucks, and other types of vehicles. Today the CAN protocol is

used in many other fields in applications that call for networked embedded control,

including industrial automation, medical applications, building automation, weaving

machines, and production machinery. CAN offers an efficient communication protocol

between sensors, actuators, controllers, and other nodes in real-time applications, and is

known for its simplicity, reliability, and high performance.

The CAN protocol is based on a bus topology, and only two wires are needed for

communication over a CAN bus. The bus has a multimaster structure where each device

on the bus can send or receive data. Only one device can send data at any time while

all the others listen. If two or more devices attempt to send data at the same time,

the one with the highest priority is allowed to send its data while the others return to

receive mode.

www.newnespress.com

As shown in Figure 9.1, in a typical vehicle application there is usually more than one

CAN bus, and they operate at different speeds. Slower devices, such as door control,

climate control, and driver information modules, can be connected to a slow speed bus.

Devices that require faster response, such as the ABS antilock braking system, the

transmission control module, and the electronic throttle module, are connected to a

faster CAN bus.

The automotive industry’s use of CAN has caused mass production of CAN controllers.

Current estimate is that 400 million CAN modules are sold every year, and CAN

controllers are integrated on many microcontrollers, including PIC microcontrollers,

and are available at low cost.

Figure 9.2 shows a CAN bus with three nodes. The CAN protocol is based on CSMA/

CDþAMP (Carrier-Sense Multiple Access/Collision Detection with Arbitration on

Message Priority) protocol, which is similar to the protocol used in Ethernet LAN.

When Ethernet detects a collision, the sending nodes simply stop transmitting and wait

Air
conditioner

Door
switch

Instrument
panel

500Kb/s

Satellite
navigation

DVD Radio

5Mb/s

Engine

Oil
pressure Brakes

Gateway

125Kb/s

CD

Head
lamps

Steering Engine
temperature

Tire
pressure

Figure 9.1: Typical CAN bus application in a vehicle

www.newnespress.com

476 Chapter 9

a random amount of time before trying to send again. CAN protocol, however, solves

the collision problem using the principle of arbitration, where only the higheest priority

node is given the right to send its data.

There are basically two types of CAN protocols: 2.0A and 2.0B. CAN 2.0A is the

earlier standard with 11 bits of identifier, while CAN 2.0B is the new extended standard

with 29 bits of identifier. 2.0B controllers are completely backward-compatible with

2.0A controllers and can receive and transmit messages in either format.

There are two types of 2.0A controllers. The first is capable of sending and receiving

2.0A messages only, and reception of a 2.0B message will flag an error. The second

type of 2.0A controller (known as 2.0B passive) sends and receives 2.0A messages but

will also acknowledge receipt of 2.0B messages and then ignore them.

Some of the CAN protocol features are:

� CAN bus is multimaster. When the bus is free, any device attached to the bus

can start sending a message.

� CAN bus protocol is flexible. The devices connected to the bus have no

addresses, which means messages are not transmitted from one node to another

based on addresses. Instead, all nodes in the system receive every message

transmitted on the bus, and it is up to each node to decide whether the received

message should be kept or discarded. A single message can be destined for a

particular node or for many nodes, depending on how the system is designed.

Another advantage of having no addresses is that when a device is added to or

CAN BUS

NODE
2

NODE
3

NODE
1

Terminator Terminator

Figure 9.2: Example CAN bus

www.newnespress.com

477Advanced PIC18 Projects—CAN Bus Projects

removed from the bus, no configuration data needs to be changed (i.e., the bus is

“hot pluggable”).

� CAN bus offers remote transmit request (RTR), which means that one node on

the bus is able to request information from the other nodes. Thus instead of

waiting for a node to continuously send information, a request for information

can be sent to the node. For example, in a vehicle, where the engine temperature

is an important parameter, the system can be designed so the temperature is

sent periodically over the bus. However, a more elegant solution is to request

the temperature as needed, since it minimizes the bus traffic while maintaining

the network’s integrity.

� CAN bus communication speed is not fixed. Any communication speed can be

set for the devices attached to a bus.

� All devices on the bus can detect an error. The device that has detected an error

immediately notifies all other devices.

� Multiple devices can be connected to the bus at the same time, and there are no

logical limits to the number of devices that can be connected. In practice, the

number of units that can be attached to a bus is limited by the bus’s delay time

and electrical load.

The data on CAN bus is differential and can be in two states: dominant and recessive.

Figure 9.3 shows the state of voltages on the bus. The bus defines a logic bit 0 as a

dominant bit and a logic bit 1 as a recessive bit. When there is arbitration on the bus, a

Voltage
level

Vdiff
RecessiveRecessive

CANL

CANH

Dominant
3.5

2.5

1.5

Time

Figure 9.3: CAN logic states

www.newnespress.com

478 Chapter 9

dominant bit state always wins out over a recessive bit state. In the recessive state, the

differential voltage CANH and CANL is less than the minimum threshold (i.e., less than

0.5V receiver input and less than 1.5V transmitter output). In the dominant state, the

differential voltage CANH and CANL is greater than the minimum threshold.

The ISO-11898 CAN bus specifies that a device on that bus must be able to drive a

forty-meter cable at 1Mb/s. A much longer bus length can usually be achieved by

lowering the bus speed. Figure 9.4 shows the variation of bus length with the

communication speed. For example, with a bus length of one thousand meters we can

have a maximum speed of 40Kb/s.

A CAN bus is terminated to minimize signal reflections on the bus. The ISO-11898

requires that the bus has a characteristic impedance of 120 ohms. The bus can be

terminated by one of the following methods:

� Standard termination

� Split termination

� Biased split termination

In standard termination, the most common termination method, a 120-ohm resistor is

used at each end of the bus, as shown in Figure 9.5(a). In split termination, the ends

of the bus are split and a single 60-ohm resistor is used as shown in Figure 9.5(b).

Split termination allows for reduced emission, and this method is gaining popularity.

Biased split termination is similar to split termination except that a voltage divider

40
40

400

100 1000

760

1120

Speed (bps)

B
us

 le
ng

th
 (

m
)

Figure 9.4: CAN bus speed and bus length

www.newnespress.com

479Advanced PIC18 Projects—CAN Bus Projects

circuit and a capacitor are used at either end of the bus. This method increases the EMC

performance of the bus (Figure 9.5(c)).

Many network protocols are described using the seven-layer Open Systems

Interconnection (OSI) model. The CAN protocol includes the data link layer, and

the physical layer of the OSI reference model (see Figure 9.6). The data link layer

(DLL) consists of the Logical Link Control (LLC) and Medium Access Control

(MAC). LLC manages the overload notification, acceptance filtering, and recovery

management. MAC manages the data encapsulation, frame coding, error detection,

and serialization/deserialization of the data. The physical layer consists of the

physical signaling layer (PSL), physical medium attachment (PMA), and the

medium dependent interface (MDI). PSL manages the bit encoding/decoding and

bit timing. PMA manages the driver/receiver characteristics, and MDI is the

connections and wires.

120 ohm

Standard termination
(a)

60 ohm

60 ohm

Split termination
(b)

VDD

60 ohm

Biased split termination

R2

R1

60 ohm

(c)

Figure 9.5: Bus termination methods

www.newnespress.com

480 Chapter 9

There are basically four message frames in CAN: data, remote, error, and overload. The

data and remote frames need to be set by the user. The other two are set by the CAN

hardware.

9.1 Data Frame

The data frame is in two formats: standard (having an 11-bit ID) and extended (having a

29-bit ID). The data frame is used by the transmitting device to send data to the

receiving device, and the data frame is the most important frame handled by the user.

Figure 9.7 shows the data frame’s structure. A standard data frame starts with the

start of frame (SOF) bit, which is followed by an 11-bit identifier and the remote

transmission request (RTR) bit. The identifier and the RTR form the 12-bit arbitration

field. The control field is 6 bits wide and indicates how many bytes of data are in

the data field. The data field can be 0 to 8 bytes. The data field is followed by the

Application
Presentation
Session
Transport
Netwok
Data Link
Physical

Medium Access Control

Medium Dependent Interface

Physical Medium Attachment

Physical Signaling

Logical Link Control

Figure 9.6: CAN and the OSI model

RTR
Control

11-bit
identifier

Start of
frame Data

CRC

ACK

End of
frame

Figure 9.7: Standard data frame

www.newnespress.com

481Advanced PIC18 Projects—CAN Bus Projects

CRC field, which checks whether or not the received bit sequence is corrupted.

The ACK field is 2 bits and is used by the transmitter to receive acknowledgment of

a valid frame from any receiver. The end of the message is indicated by a 7-bit end

of frame (EOF) field. In an extended data frame, the arbitration field is 32 bits wide

(29-bit identifier þ1-bit IDE to define the message as an extended data frame þ1-bit

SRR which is unused þ1-bit RTR) (see Figure 9.8).

The data frame consists of the following fields:

9.1.1 Start of Frame (SOF)

The start of frame field indicates the beginning of a data frame and is common to

both standard and extended formats.

9.1.2 Arbitration Field

Arbitration is used to resolve bus conflicts that occur when several devices at

once start sending messages on the bus. The arbitration field indicates the priority

of a frame, and it is different in the standard and extended formats. In the standard

format there are 11 bits, and up to 2032 IDs can be set. The extended format

ID consists of 11 base IDs plus 18 extended IDs. Up to 2032 � 218 discrete IDs

can be set.

During the arbitration phase, each transmitting device transmits its identifier and

compares it with the level on the bus. If the levels are equal, the device continues

to transmit. If the device detects a dominant level on the bus while it is trying to

transmit a recessive level, it quits transmitting and becomes a receiving device.

After arbitration only one transmitter is left on the bus, and this transmitter continues

to send its control field, data field, and other data.

11-bit
identifier

SRR 18-bit
identifier

IDE RTR

CRC

Control

ACK

End of
frame

Start of
frame

Figure 9.8: Extended data frame

www.newnespress.com

482 Chapter 9

The process of arbitration is illustrated in Figure 9.9 by an example consisting of three

nodes having identifiers:

Node 1: 11100110011 Node 2: 11100111111 Node 3: 11100110001

Assuming the recessive level corresponds to 1 and the dominant level to 0, the

arbitration is performed as follows:

� All the nodes start transmitting simultaneously, first sending SOF bits.

� Then they send their identifier bits. The 8th bit of Node 2 is in the recessive

state, while the corresponding bits of Nodes 1 and 3 are in the dominant state.

Therefore Node 2 stops transmitting and returns to receive mode. The receiving

phase is indicated by a gray field.

� The 10th bit of Node 1 is in the recessive state, while the same bit of Node 3 is

in dominant state. Thus Node 1 stops transmitting and returns to receive mode.

� The bus is now left to Node 3, which can send its control and data fields freely.

Notably, the devices on the bus have no addresses. Instead, all the devices pick up all

the data on the bus, and every node must filter out the messages it does not want.

Bus

Node 3

Node 2

Node 1

Start of frame

1 2 3 4 5 6 7 8 9 10 11

Figure 9.9: Example CAN bus arbitration

www.newnespress.com

483Advanced PIC18 Projects—CAN Bus Projects

9.1.3 Control Field

The control field is 6 bits wide, consisting of 2 reserved bits and 4 data length code

(DLC) bits, and indicates the number of data bytes in the message being transmitted.

This field is coded as shown in Table 9.1, where up to 8 transmit bytes can be coded

with 6 bits.

9.1.4 Data Field

The data field carries the actual content of the message. The data size can vary from

0 to 8 bytes. The data is transmitted with the MSB first.

9.1.5 CRC Field

The CRC field, consisting of a 15-bit CRC sequence and a 1-bit CRC delimiter, is

used to check the frame for a transmission error. The CRC calculation includes the

start of frame, arbitration field, control field, and data field. The calculated CRC

and the received CRC sequence are compared, and if they do not match, an error

is assumed.

Table 9.1: Coding the control field

No. of data bytes DLC3 DLC2 DLC1 DLC0

0 D D D D

1 D D D R

2 D D R D

3 D D R R

4 D R D D

5 D R D R

6 D R R D

7 D R R R

8 R D or R D or R D or R

D: Dominant level, R: Recessive level.

www.newnespress.com

484 Chapter 9

9.1.6 ACK Field

The ACK field indicates that the frame has been received normally. This field

consists of 2 bits, one for ACK slot and one for ACK delimiter.

9.2 Remote Frame

The remote frame is used by the receiving unit to request transmission of a

message from the transmitting unit. It consists of six fields (see Figure 9.10): start

of frame, arbitration field, control field, CRC field, ACK field, and end of

frame field. A remote frame is the same as a data frame except that it lacks a

data field.

9.3 Error Frame

Error frames are generated and transmitted by the CAN hardware and are used to

indicate when an error has occurred during transmission. An error frame consists of

an error flag and an error delimiter. There are two types of error flags: active, which

consists of 6 dominant bits, and passive, which consists of 6 recessive bits. The

error delimiter consists of 8 recessive bits.

9.4 Overload Frame

The overload frame is used by the receiving unit to indicate that it is not yet

ready to receive frames. This frame consists of an overload flag and an overload

delimiter. The overload flag consists of 6 dominant bits and has the same

structure as the active error flag of the error frame. The overload delimiter

consists of 8 recessive bits and has the same structure as the error delimiter of

the error frame.

SOF
Arbitration

field

Control field
ACK

CRC
EOF

Figure 9.10: Remote frame

www.newnespress.com

485Advanced PIC18 Projects—CAN Bus Projects

9.5 Bit Stuffing

The CAN bus makes use of bit stuffing, a technique to periodically synchronize

transmit-receive operations to prevent timing errors between receive nodes. After 5

consecutive bits with the same level, one bit of inverted data is added to the sequence.

If, during sending of a data frame or remote frame, the same level occurs in 5

consecutive bits anywhere from the start of frame to the CRC sequence, an inverted

bit is inserted in the next (i.e., the sixth) bit. If, during receiving of a data frame or

remote frame, the same level occurs in 5 consecutive bits anywhere from the start of

frame to CRC sequence, the next (sixth) bit is deleted from the received frame. If the

deleted sixth bit is at the same level as the fifth bit, an error (stuffing error) is detected.

9.6 Types of Errors

The CAN bus identifies five types of errors:

� Bit error

� CRC error

� Form error

� ACK error

� Stuffing error

Bit errors are detected when the output level and the data level on the bus do not

match. Both transmit and receive units can detect bit errors. CRC errors are detected

only by receiving units. CRC errors are detected if the calculated CRC from the

received message and the received CRC do not match. Form errors are detected

by the transmitting or receiving units when an illegal frame format is detected.

ACK errors are detected only by the transmitting units if the ACK field is found

recessive. Stuffing errors are detected when the same level of data is detected for 6

consecutive bits in any field that should have been bit-stuffed. This error can be

detected by both the transmitting and receiving units.

9.7 Nominal Bit Timing

The CAN bus nominal bit rate is defined as the number of bits transmitted every

second without resynchronization. The inverse of the nominal bit rate is the nominal

bit time. All devices on the CAN bus must use the same bit rate, even though each

www.newnespress.com

486 Chapter 9

device can have its own different clock frequency. One message bit consists of four

nonoverlapping time segments:

� Synchronization segment (Sync_Seg)

� Propagation time segment (Prop_Seg)

� Phase buffer segment 1 (Phase_Seg1)

� Phase buffer segment 2 (Phase_Seg2)

The Sync_Seg segment is used to synchronize various nodes on the bus, and an edge

is expected to lie within this segment. The Prop_Seg segment compensates for

physical delay times within the network. The Phase_Seg1 and Phase_Seg2 segments

compensate for edge phase errors. These segments can be lengthened or shortened by

synchronization. The sample point is the point in time where the actual bit value is

located and occurs at the end of Phase_Seg1. A CAN controller can be configured

to sample three times and use a majority function to determine the actual bit value.

Each segment is divided into units known as time quantum, or TQ. A desired bit

timing can be set by adjusting the number of TQ’s that comprise one message bit

and the number of TQ’s that comprise each segment in it. The TQ is a fixed unit

derived from the oscillator period, and the time quantum of each segment can vary

from 1 to 8. The lengths of the various time segments are:

� Sync_Seg is 1 time quantum long

� Prop_Seg is programmable as 1 to 8 time quanta long

� Phase_Seg1 is programmable as 1 to 8 time quanta long

� Phase_Seg2 is programmable as 2 to 8 time quanta long

By setting the bit timing, a sampling point can be set so multiple units on the bus can

sample messages with the same timing.

The nominal bit time is programmable from a minimum of 8 time quanta to a maximum

of 25 time quanta. By definition, the minimum nominal bit time is 1ms, corresponding
to a maximum 1Mb/s rate. The nominal bit time (TBIT) is given by:

TBIT ¼ TQ � ðSync Seg þ Prop Seg þ Phase Seg1 þ Phase Seg2Þ ð9:1Þ

www.newnespress.com

487Advanced PIC18 Projects—CAN Bus Projects

and the nominal bit rate (NMR) is

NBR ¼ 1=TBIT ð9:2Þ

The time quantum is derived from the oscillator frequency and the programmable

baud rate prescaler, with integer values from 1 to 64. The time quantum can be

expressed as:

TQ ¼ 2 � ðBRP þ 1Þ=FOSC ð9:3Þ

where TQ is in ms, FOSC is in MHz, and BRP is the baud rate prescaler (0 to 63).

Equation (9.2) can be written as

TQ ¼ 2 � ðBRP þ 1Þ � TOSC ð9:4Þ

where TOSC is in ms.

An example of the calculation of a nominal bit rate follows.

Example 9.1

Assuming a clock frequency of 20MHz, a baud rate prescaler value of 1, and a

nominal bit time of TBIT ¼ 8 * TQ, determine the nominal bit rate.

Solution 9.1

Using equation (9.3),

TQ ¼ 2 � ð1 þ 1Þ=20 ¼ 0:2ms

also

TBIT ¼ 8 � TQ ¼ 8 � 0:2 ¼ 1:6ms

From Equation (9.2),

NBR ¼ 1=TBIT ¼ 1=1:6ms ¼ 625; 000bites=s or 625Kb=s

www.newnespress.com

488 Chapter 9

In order to compensate for phase shifts between the oscillator frequencies of nodes

on a bus, each CAN controller must synchronize to the relevant signal edge of the

received signal. Two types of synchronization are defined: hard synchronization and

resynchronization. Hard synchronization is used only at the beginning of a message

frame, when each CAN node aligns the Sync_Seg of its current bit time to the

recessive or dominant edge of the transmitted start of frame. According to the

rules of synchronization, if a hard synchronization occurs, there will not be a

resynchronization within that bit time.

With resynchronization, Phase_Seg1 may be lengthened or Phase_Seg2 may be

shortened. The amount of change in the phase buffer segments has an upper bound

given by the synchronization jump width (SJW). The SJW is programmable between

1 and 4, and its value is added to Phase_Seg1 or subtracted from Phase_Seg2.

9.8 PIC Microcontroller CAN Interface

In general, any type of PIC microcontroller can be used in CAN bus–based projects, but

some PIC microcontrollers (e.g., PIC18F258) have built-in CAN modules, which can

simplify the design of CAN bus–based systems. Microcontrollers with no built-in CAN

modules can also be used in CAN bus applications, but additional hardware and

software are required, making the design costly and also more complex.

Figure 9.11 shows the block diagram of a PIC microcontroller–based CAN bus

application, using a PIC16 or PIC12-type microcontroller (e.g., PIC16F84) with no

CAN Node

CAN Bus

CAN
Transceiver
MCP2551 TX

RX PIC12/16
Series 8-bit

microcontroller

CAN
Controller
MCP2515

SPI

Figure 9.11: CAN node with any PIC microcontroller

www.newnespress.com

489Advanced PIC18 Projects—CAN Bus Projects

built-in CAN module. The microcontroller is connected to the CAN bus using an

external MCP2515 CAN controller chip and an MCP2551 CAN bus transceiver chip.

This configuration is suitable for a quick upgrade to an existing design using any PIC

microcontroller.

For new CAN bus–based designs it is easier to use a PIC microcontroller with a built-in

CAN module. As shown in Figure 9.12, such devices include built-in CAN controller

hardware on the chip. All that is required to make a CAN node is to add a CAN

transceiver chip. Table 9.2 lists some of the PIC microcontrollers that include a CAN

module.

CAN Node

TX

CAN Bus

RXCAN
Transceiver
MCP2551

PIC18F
Series 8-bit

Microcontroller
&

CAN controller
module

Figure 9.12: CAN node with integrated CAN module

Table 9.2: Some popular PIC microcontrollers that include CAN modules

Device Pins
Flash
(KB)

SRAM
(KB)

EEPROM
(bytes) A/D

CAN
module SPI UART

18F258 28 16 768 256 5 1 1 1

18F2580 28 32 1536 256 8 1 1 1

18F2680 28 64 3328 1024 8 1 1 1

18F4480 40/44 16 768 256 11 1 1 1

18F8585 80 48 3328 1024 16 1 1 1

18F8680 80 64 3328 1024 16 1 1 1

www.newnespress.com

490 Chapter 9

9.9 PIC18F258 Microcontroller

Later in this chapter the PIC18F258 microcontroller is used in a CAN bus–based

project. This section describes this microcontroller and its operating principles with

respect to its built-in CAN bus. The principles here are in general applicable to other

PIC microcontrollers with CAN modules.

The PIC18F258 is a high performance 8-bit microcontroller with integrated CAN

module. The device has the following features:

� 32K flash program memory

� 1536 bytes RAM data memory

� 256 bytes EEPROM memory

� 22 I/O ports

� 5-channel 10-bit A/D converters

� Three timers/counters

� Three external interrupt pins

� High-current (25mA) sink/source

� Capture/compare/PWM module

� SPI/I2C module

� CAN 2.0A/B module

� Power-on reset and power-on timer

� Watchdog timer

� Priority level interrupts

� DC to 40MHz clock input

� 8 � 8 hardware multiplier

� Wide operating voltage (2.0V to 5.5V)

� Power-saving sleep mode

www.newnespress.com

491Advanced PIC18 Projects—CAN Bus Projects

The features of the PIC18F258 microcontroller’s CAN module are as follows:

� Compatible with CAN 1.2, CAN 2.0A, and CAN 2.0B

� Supports standard and extended data frames

� Programmable bit rate up to 1Mbit/s

� Double-buffered receiver

� Three transmit buffers

� Two receive buffers

� Programmable clock source

� Six acceptance filters

� Two acceptance filter masks

� Loop-back mode for self-testing

� Low-power sleep mode

� Interrupt capabilities

The CAN module uses port pins RB3/CANRX and RB2/CANTX for CAN bus receive

and transmit functions respectively. These pins are connected to the CAN bus via an

MCP2551-type CAN bus transceiver chip.

The PIC18F258 microcontroller supports the following frame types:

� Standard data frame

� Extended data frame

� Remote frame

� Error frame

� Overload frame

� Interframe space

A node uses filters to decide whether or not to accept a received message. Message

filtering is applied to the whole identifier field, and mask registers are used to specify

which bits in the identifier the filters should examine.

www.newnespress.com

492 Chapter 9

The CAN module in the PIC18F258 microcontroller has six modes of operation:

� Configuration mode

� Disable mode

� Normal operation mode

� Listen-only mode

� Loop-back mode

� Error recognition mode

9.9.1 Configuration Mode

The CAN module is initialized in configuration mode. The module is not allowed to

enter configuration mode while a transmission is taking place. In configuration mode

the module will neither transmit nor receive, the error counters are cleared, and the

interrupt flags remain unchanged.

9.9.2 Disable Mode

In disable mode, the module will neither transmit nor receive. In this mode the internal

clock is stopped unless the module is active. If the module is active, it will wait for

11 recessive bits on the CAN bus, detect that condition as an IDLE bus, and then accept

the module disable command. The WAKIF interrupt (wake-up interrupt) is the only

CAN module interrupt that is active in disable mode.

9.9.3 Normal Operation Mode

The normal operation mode is the CAN module’s standard operating mode. In this

mode, the module monitors all bus messages and generates acknowledge bits, error

frames, etc. This is the only mode that can transmit messages.

9.9.4 Listen-only Mode

The listen-only mode allows the CAN module to receive messages, including

messages with errors. It can be used to monitor bus activities or to detect the baud

rate on the bus. For automatic baud rate detection, at least two other nodes must be

www.newnespress.com

493Advanced PIC18 Projects—CAN Bus Projects

communicating with each other. The baud rate can be determined by testing

different values until valid messages are received. The listen-only mode cannot

transmit messages.

9.9.5 Loop-Back Mode

In the loop-back mode, messages can be directed from internal transmit buffers to

receive buffers without actually transmitting messages on the CAN bus. This mode

is useful during system developing and testing.

9.9.6 Error Recognition Mode

The error recognition mode is used to ignore all errors and receive all messages. In

this mode, all messages, valid or invalid are received and copied to the receive buffer.

9.9.7 CAN Message Transmission

The PIC18F258 microcontroller implements three dedicated transmit buffers: TXB0,

TXB1, and TXB2. Pending transmittable messages are in a priority queue. Before

the SOF is sent, the priorities of all buffers queued for transmission are compared.

The transmit buffer with the highest priority is sent first. If two buffers have the

same priority, the one with the higher buffer number is sent first. There are four

levels of priority.

9.9.8 CAN Message Reception

Reception of a message is a more complex process. The PIC18F258 microcontroller

includes two receive buffers, RXB0 and RXB1, with multiple acceptance filters

for each (see Figure 9.13). All received messages are assembled in the message

assembly buffer (MAB). Once a message is received, regardless of the type of

identifier and the number of data bytes, the entire message is copied into the MAB.

Received messages have priorities. RXB0 is the higher priority buffer, and it has two

message acceptance filters, RXF0 and RXF1. RXB1 is the lower priority buffer and

has four acceptance filters: RXF2, RXF3, RXF4, and RXF5. Two programmable

acceptance filter masks, RXM0 and RXM1, are also available, one for each receive

buffer.

www.newnespress.com

494 Chapter 9

The CAN module uses message acceptance filters and masks to determine if a

message in the MAB should be loaded into a receive buffer. Once a valid message is

received by the MAB, the identifier field of the message is compared to the filter

values. If there is a match, that message is loaded into the appropriate receive buffer.

The filter masks determine which bits in the identifier are examined with the filters.

The truth table in Table 9.3 shows how each bit in the identifier is compared against

Message Assembly Buffer

Identifier
Data and
Identifier

Data and
Identifier Identifier

RXB0 RXB1

Acceptance Filter
RXF1

Acceptance Filter
RXF4

Acceptance Filter
RXF5

Acceptance Filter
RXF0

Acceptance Filter
RXF3

Acceptance Filter
RXM2

Acceptance Mask
RXM0

Acceptance Mask
RXM1

Accept

Accept

Figure 9.13: Receive buffer block diagram

Table 9.3: Filter/mask truth table

Mask bit n Filter bit n Message identifier bit n001 Accept or reject bit n

0 � � Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

www.newnespress.com

495Advanced PIC18 Projects—CAN Bus Projects

the masks and filters to determine if the message should be accepted. If a mask

bit is set to 0, that bit in the identifier is automatically accepted regardless of the

filter bit.

9.9.9 Calculating the Timing Parameters

Setting the nodes’ timing parameters is essential for the bus to operate reliably. Given

the microcontroller clock frequency and the required CAN bus bit rate, we can calculate

the values of the following timing parameters:

� Baud rate prescaler value

� Prop_Seg value

� Phase_Seg1 value

� Phase_Seg2 value

� SJW value

Correct timing requires that

� Prop_Seg þ Phase_Seg1 � Phase_Seg2

� Phase_Seg2 � SJW

The following example illustrates the calculation of these timing parameters.

Example 9.2

Assuming the microcontroller oscillator clock rate is 20MHz and the required CAN bit

rate is 125KHz, calculate the timing parameters.

Solution 9.2

With a 20MHz clock rate, the clock period is 50ns. Choosing a baud rate prescaler

value of 4, from Equation (9.4), TQ ¼ 2 * (BRP þ 1) * TOSC, gives a time

quantum of TQ ¼ 500ns. To obtain a nominal bit rate of 125KHz, the nominal bit

time must be:

TBIT ¼ 1=0:125MHz ¼ 8ms; or 16TQ

www.newnespress.com

496 Chapter 9

The Sync_Segment is 1TQ. Choosing 2TQ for the Prop_Seg, and 7TQ for Phase_Seg1

leaves 6TQ for Phase_Seg2 and places the sampling point at 10TQ at the end of

Phase_Seg1.

By the rules described earlier, the SJW can be the maximum allowed (i.e., 4). However,

a large SJW is only necessary when the clock generation of different nodes is not

stable or accurate (e.g., if ceramic resonators are used). Typically, a SJW of 1 is

enough. In summary, the required timing parameters are:

Baud rate prescaler (BRP) ¼ 4
Sync_Seg ¼ 1
Prop_Seg ¼ 2
Phase_Seg1 ¼ 7
Phase_Seg2 ¼ 6
SJW ¼ 1

The sampling point is at 10TQ which corresponds to 62.5% of the total bit time.

There are several tools available for free on the Internet for calculating CAN bus timing

parameters. One such tool is the CAN Baud Rate Calculator, developed by Artic

Consultants Ltd (http://www.articconsultants.co.uk). An example using this tool

follows.

Example 9.3

Assuming the microcontroller oscillator clock rate is 20MHz and the required CAN

bit rate is 125KHz, calculate the timing parameters using the CAN Baud Rate

Calculator.

Solution 9.3

Figure 9.14 shows the output of the CAN Baud Rate Calculator program. The device

type is selected as PIC18Fxxx8, the oscillator frequency is entered as 20MHz, and the

CAN bus baud rate is entered as 125KHz.

Clicking the Calculate Settings button calculates and displays the recommended timing

parameters. In general, there is more than one solution, and different solutions are given

in the Calculated Solutions field’s drop-down menu.

In choosing Solution 2 from the drop-down menu, the following timing parameters are

recommended by the program:

www.newnespress.com

497Advanced PIC18 Projects—CAN Bus Projects

Baud rate prescaler (BRP) ¼ 4
Sync_Seg ¼ 1
Prop_Seg ¼ 5
Phase_Seg1 ¼ 5
Phase_Seg2 ¼ 5
SJW ¼ 1
Sample point ¼ 68%
Error ¼ 0%

9.10 mikroC CAN Functions

The mikroC language provides two libraries for CAN bus applications: the library for

PIC microcontrollers with built-in CAN modules and the library based on using a SPI

Figure 9.14: Output of the CAN Baud Rate Calculator program

www.newnespress.com

498 Chapter 9

bus for PIC microcontrollers having no built-in CAN modules. In this section we

will discuss only the library functions available for PIC microcontrollers with built-in

CAN modules. Similar functions are available for the PIC microcontrollers with no

built-in CAN modules.

The mikroC CAN functions are supported only by PIC18XXX8 microcontrollers

with MCP2551 or similar CAN transceivers. Both standard (11 identifier bits) and

extended format (29 identifier bits) messages are supported.

The following mikroC functions are provided:

� CANSetOperationMode

� CANGetOperationMode

� CANInitialize

� CANSetBaudRAte

� CANSetMask

� CANSetFilter

� CANRead

� CANWrite

9.10.1 CANSetOperationMode

The CANSetOperationMode function sets the CAN operation mode. The function

prototype is:

void CANSetOperationMode(char mode, char wait_flag)

The parameter wait_ flag is either 0 or 0 � FF. If it is set to 0 � FF, the function blocks

and will not return until the requested mode is set. If it is set to 0, the function returns as

a nonblocking call.

The mode can be one of the following:

� CAN_MODE_NORMAL Normal mode of operation

� CAN_MODE_SLEEP Sleep mode of operation

� CAN_MODE_LOOP Loop-back mode of operation

www.newnespress.com

499Advanced PIC18 Projects—CAN Bus Projects

� CAN_MODE_LISTEN Listen-only mode of operation

� CAN_MODE_CONFIG Configuration mode of operation

9.10.2 CANGetOperationMode

The CANGetOperationMode function returns the current CAN operation mode. The

function prototype is:

char CANGetOperationMode(void)

9.10.3 CANInitialize

The CANInitialize function initializes the CAN module. All mask registers are cleared

to 0 to allow all messages. Upon execution of this function, the normal mode is set. The

function prototype is:

void CANInitialize(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPEG, char CAN_CONFIG_FLAGS)

where

SJW is the synchronization jump width

BRP is the baud rate prescaler

PHSEG1 is the Phase_Seg1 timing parameter

PHSEG2 is the Phase_Seg2 timing parameter

PROPSEG is the Prop_Seg

CAN_CONFIG_FLAGS can be one of the following configuration flags:

� CAN_CONFIG_DEFAULT Default flags

� CAN_CONFIG_PHSEG2_PRG_ON Use supplied PHSEG2 value

� CAN_CONFIG_PHSEG2_PRG_OFF Use maximum of PHSEG1 or

information processing time (IPT),

whichever is greater

� CAN_CONFIG_LINE_FILTER_ON Use CAN bus line filter for wake-up

� CAN_CONFIG_FILTER_OFF Do not use CAN bus line filter

www.newnespress.com

500 Chapter 9

� CAN_CONFIG_SAMPLE_ONCE Sample bus once at sample point

� CAN_CONFIG_SAMPLE_THRICE Sample bus three times prior to

sample point

� CAN_CONFIG_STD_MSG Accept only standard identifier

messages

� CAN_CONFIG_XTD_MSG Accept only extended identifier

messages

� CAN_CONFIG_DBL_BUFFER_ON Use double buffering to receive

data

� CAN_CONFIG_DBL_BUFFER_OFF Do not use double buffering

� CAN_CONFIG_ALL_MSG Accept all messages including

invalid ones

� CAN_CONFIG_VALID_XTD_MSG Accept only valid extended

identifier messages

� CAN_CONFIG_VALID_STD_MSG Accept only valid standard

identifier messages

� CAN_CONFIG_ALL_VALID_MSG Accept all valid messages

These configuration values can be bitwise AND’ed to form complex configuration

values.

9.10.4 CANSetBaudRate

The CANSetBaudRate function is used to set the CAN bus baud rate. The function

prototype is:

void CANSetBaudRate(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPSEG, char CAN_CONFIG_FLAGS)

The arguments of the function are as in function CANInitialize.

9.10.5 CANSetMask

The CANSetMask function sets the mask for filtering messages. The function

prototype is:

www.newnespress.com

501Advanced PIC18 Projects—CAN Bus Projects

void CANSetMask(char CAN_MASK, long value, char
CAN_CONFIGFLAGS)

CAN_MASK can be one of the following:

� CAN_MASK_B1 Receive buffer 1 mask value

� CAN_MASK_B2 Receive buffer 2 mask value

value is the mask register value. CAN_CONFIG_FLAGS can be either

CAN_CONFIG_XTD (extended message), or CAN_CONFIG_STD (standard

message).

9.10.6 CANSetFilter

The CANSetFilter function sets filter values. The function prototype is:

void CANSetFilter(char CAN_FILTER, long value, char
CAN_CONFIG_FLAGS)

CAN_FILTER can be one of the following:

� CAN_FILTER_B1_F1 Filter 1 for buffer 1

� CAN_FILTER_B1_F2 Filter 2 for buffer 1

� CAN_FILTER_B2_F1 Filter 1 for buffer 2

� CAN_FILTER_B2_F2 Filter 2 for buffer 2

� CAN_FILTER_B2_F3 Filter 3 for buffer 2

� CAN_FILTER_B2_F4 Filter 4 for buffer 2

CAN_CONFIG_FLAGS can be either CAN_CONFIG_XTD (extended message) or

CAN_CONFIG_STD (standard message).

9.10.7 CANRead

The CANRead function is used to read messages from the CAN bus. If no message is

available, 0 is returned. The function prototype is:

char CANRead(long *id, char *data, char *datalen, char
*CAN_RX_MSG_FLAGS)

www.newnespress.com

502 Chapter 9

id is the CAN message identifier. Only 11 or 29 bits may be used depending on

message type (standard or extended). data is an array of bytes up to 8 where the

received data is stored. datalen is the length of the received data (1 to 8).

CAN_RX_MSG_FLAGS can be one of the following:

� CAN_RX_FILTER_1 Receive buffer filter 1 accepted this message

� CAN_RX_FILTER_2 Receive buffer filter 2 accepted this message

� CAN_RX_FILTER_3 Receive buffer filter 3 accepted this message

� CAN_RX_FILTER_4 Receive buffer filter 4 accepted this message

� CAN_RX_FILTER_5 Receive buffer filter 5 accepted this message

� CAN_RX_FILTER_6 Receive buffer filter 6 accepted this message

� CAN_RX_OVERFLOW Receive buffer overflow occurred

� CAN_RX_INVALID_MSG Invalid message received

� CAN_RX_XTD_FRAME Extended identifier message received

� CAN_RX_RTR_FRAME RTR frame message received

� CAN_RX_DBL_BUFFERED This message was double buffered

These flags can be bitwise AND’ed if desired.

9.10.8 CANWrite

The CANWrite function is used to send a message to the CAN bus. A zero is returned

if message can not be queued (buffer full). The function prototype is:

char CANWrite(long id, char *data, char datalen, char
CAN_TX_MSG_FLAGS)

id is the CAN message identifier. Only 11 or 29 bits may be used depending on message

type (standard or extended). data is an array of bytes up to 8 where the data to be sent is

stored. datalen is the length of the data (1 to 8).

CAN_TX_MSG_FLAGS can be one of the following:

� CAN_TX_PRIORITY_0 Transmit priority 0

� CAN_TX_PRIORITY_1 Transmit priority 1

www.newnespress.com

503Advanced PIC18 Projects—CAN Bus Projects

� CAN_TX_PRIORITY_2 Transmit priority 2

� CAN_TX_PRIORITY_3 Transmit priority 3

� CAN_TX_STD_FRAME Standard identifier message

� CAN_TX_XTD_FRAME Extended identifier message

� CAN_TX_NO_RTR_FRAME Non RTR message

� CAN_TX_RTR_FRAME RTR message

These flags can be bitwise AND’ed if desired.

9.11 CAN Bus Programming

To operate the PIC18F258 microcontroller on the CAN bus, perform the following

steps:

� Configure the CAN bus I/O port directions (RB2 and RB3)

� Initialize the CAN module (CANInitialize)

� Set the CAN module to CONFIG mode (CANSetOperationMode)

� Set the mask registers (CANSetMask)

� Set the filter registers (CANSetFilter)

� Set the CAN module to normal mode (CANSetOperationMode)

� Write/read data (CANWrite/CANRead)

PROJECT 9.1—Temperature Sensor CAN
Bus Project

The following is a simple two-node CAN bus–based project. The block diagram of

the project is shown in Figure 9.15. The system is made up of two CAN nodes.

One node (called DISPLAY node) requests the temperature every second and

displays it on an LCD. This process is repeated continuously. The other node

(called COLLECTOR node) reads the temperature from an external semiconductor

temperature sensor.

www.newnespress.com

504 Chapter 9

The project’s circuit diagram is given in Figure 9.16. Two CAN nodes are

connected together using a two-meter twisted pair cable, terminated with a 120-ohm

resistor at each end.

NODE: COLLECTOR NODE: DISPLAY

PIC18F
258 LCD

120 ohm
terminator

PIC18F
258LM35

MCP2551 MCP2551

CAN Bus

Temperature
sensor

120 ohm
terminator

Figure 9.15: Block diagram of the project

Figure 9.16: Circuit diagram of the project

www.newnespress.com

505Advanced PIC18 Projects—CAN Bus Projects

The DISPLAY Processor

Like the COLLECTOR processor, the DISPLAY processor consists of a PIC18F258

microcontroller with a built-in CAN module and an MCP2551 transceiver chip. The

microcontroller is operated from an 8MHz crystal. The MCLR input is connected to

an external reset button. The CAN outputs (RB2/CANTX and RB3/CANRX) of the

microcontroller are connected to the TXD and RXD inputs of the MCP2551. Pins

CANH and CANL of the transceiver chip are connected to the CAN bus. An

HD44780-type LCD is connected to PORTC of the microcontroller to display the

temperature values.

The COLLECTOR Processor

The COLLECTOR processor consists of a PIC18F258 microcontroller with a

built-in CAN module and an MCP2551 transceiver chip. The microcontroller is

operated from an 8MHz crystal. The MCLR input is connected to an external reset

button. Analog input AN0 of the microcontroller is connected to a LM35DZ-type

semiconductor temperature sensor. The sensor can measure temperature in the range

of 0�C to 100�C and generates an analog voltage directly proportional to the

measured temperature (i.e., the output is 10mV/�C). For example, at 20�C the

output voltage is 200mV.

The CAN outputs (RB2/CANTX and RB3/CANRX) of the microcontroller are

connected to the TXD and RXD inputs of an MCP2551-type CAN transceiver

chip. The CANH and CANL outputs of this chip are connected directly to a twisted

cable terminating at the CAN bus. The MCP2551 is an 8-pin chip that supports

data rates up to 1Mb/s. The chip can drive up to 112 nodes. An external resistor

connected to pin 8 of the chip controls the rise and fall times of CANH and

CANL so that EMI can be reduced. For high-speed operation this pin should be

connected to ground. A reference voltage equal to VDD/2 is output from pin 5 of

the chip.

The program listing is in two parts: the DISPLAY program and the COLLECTOR

program. The operation of the system is as follows:

� The DISPLAY processor requests the current temperature from the

COLLECTOR processor over the CAN bus

www.newnespress.com

506 Chapter 9

� The COLLECTOR processor reads the temperature, formats it, and sends to the

DISPLAY processor over the CAN bus

� The DISPLAY processor reads the temperature from the CAN bus and then

displays it on the LCD

� This process is repeated every second

DISPLAY Program

Figure 9.17 shows the program listing of the DISPLAY program, called DISPLAY.C.

At the beginning of the program PORTC pins are configured as outputs, RB3 is

configured as input (CANRX), and RB2 is configured as output (CANTX). In this

project the CAN bus bit rate is selected as 100Kb/s. With a microcontroller clock

frequency of 8MHz, the Baud Rate Calculator program (see Figure 9.14) is used to

calculate the timing parameters as:

SJW ¼ 1
BRP ¼ 1
Phase_Seg1 ¼ 6
Phase_Seg2 ¼ 7
Prop_Seg ¼ 6

The mikroC CAN bus function CANInitialize is used to initialize the CAN module. The

timing parameters and the initialization flag are specified as arguments in this function.

The initialization flag is made up from the bitwise AND of:

init_flag ¼ CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG &
CAN_CONFIG_LINE_FILTER_OFF;

Where sampling the bus three times is specified, the standard identifier is specified,

double buffering is turned on, and the line filter is turned off.

Then the operationmode is set to CONFIG and the filter masks and filter values are specified.

Both mask 1 and mask 2 are set to all 1’s (�1 is a shorthand way of writing hexadecimal

FFFFFFFF, i.e., setting all mask bits to 1’s) so that all filter bits match up with incoming data.

www.newnespress.com

507Advanced PIC18 Projects—CAN Bus Projects

/∗∗
 CAN BUS EXAMPLE - NODE: DISPLAY
 ===============================

This is the DISPLAY node of the CAN bus example. In this project a PIC18F258
type microcontroller is used. An MCP2551 type CAN bus transceiver is used to
connect the microcontroller to the CAN bus. The microcontroller is operated from
an 8MHz crystal with an external reset button.

Pin CANRX and CANTX of the microcontroller are connected to pins RXD
and TXD of the transceiver chip respectively. Pins CANH and CANL of
the transceiver chip are connected to the CAN bus.

An LCD is connected to PORTC of the microcontroller. The ambient
temperature is read from another CAN node and is displayed on the LCD.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD

 RC0 D4
 RC1 D5
 RC2 D6
 RC3 D7
 RC4 RS
 RC5 EN

CAN speed parameters are:

 Microcontroller clock: 8MHz
 CAN Bus bit rate: 100Kb/s
 Sync_Seg: 1
 Prop_Seg: 6
 Phase_Seg1: 6
 Phase_Seg2: 7
 SJW: 1
 BRP: 1
 Sample point: 65%

Author: Dogan Ibrahim
Date: October 2007
File: DISPLAY.C
∗∗∗/

void main()
{
 unsigned char temperature, data[8];
 unsigned short init_flag, send_flag, dt, len, read_flag;
 char SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, txt[4];
 long id, mask;

Figure 9.17: DISPLAY program listing

www.newnespress.com

508 Chapter 9

 TRISC = 0; // PORTC are outputs (LCD)
 TRISB = 0x08; // RB2 is output, RB3 is input
//
// CAN BUS Parameters
//
 SJW = 1;
 BRP = 1;
 Phase_Seg1 = 6;
 Phase_Seg2 = 7;
 Prop_Seg = 6;

 init_flag = CAN_CONFIG_SAMPLE_THRICE &
 CAN_CONFIG_PHSEG2_PRG_ON &
 CAN_CONFIG_STD_MSG &
 CAN_CONFIG_DBL_BUFFER_ON &
 CAN_CONFIG_VALID_XTD_MSG &
 CAN_CONFIG_LINE_FILTER_OFF;

 send_flag = CAN_TX_PRIORITY_0 &
 CAN_TX_XTD_FRAME &
 CAN_TX_NO_RTR_FRAME;

 read_flag = 0;
//
// Initialize CAN module
//
 CANInitialize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);
//
// Set CAN CONFIG mode
//
 CANSetOperationMode(CAN_MODE_CONFIG, 0xFF);

 mask = -1;
//
// Set all MASK1 bits to 1's
//
 CANSetMask(CAN_MASK_B1, mask, CAN_CONFIG_XTD_MSG);
//
// Set all MASK2 bits to 1's
//
 CANSetMask(CAN_MASK_B2, mask, CAN_CONFIG_XTD_MSG);
//
// Set id of filter B2_F3 to 3
//
 CANSetFilter(CAN_FILTER_B2_F3,3,CAN_CONFIG_XTD_MSG);
//
// Set CAN module to NORMAL mode
//
 CANSetOperationMode(CAN_MODE_NORMAL, 0xFF);

Figure 9.17: (Cont’d)

www.newnespress.com

509Advanced PIC18 Projects—CAN Bus Projects

Filter 3 for buffer 2 is set to value 3 so that identifiers having values 3 are accepted by

the receive buffer.

The operation mode is then set to NORMAL. The program then configures the LCD

and displays the message “CAN BUS” for one second on the LCD.

The main program loop executes continuously and starts with a for statement. Inside

this loop the LCD is cleared and text “TEMP ¼” is displayed on the LCD. Then

character “T” is sent over the bus with the identifier equal to 500 (the COLLECTOR

//
// Configure LCD
//
 Lcd_Config(&PORTC,4,5,0,3,2,1,0); // LCD is connected to PORTC
 Lcd_Cmd(LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"CAN BUS"); // Display heading on LCD
 Delay_ms(1000); // Wait for 2 seconds

//
// Program loop. Read the temperature from Node:COLLECTOR and display
// on the LCD continuously
//
 for(;;) // Endless loop
 {
 Lcd_Cmd(LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"Temp = "); // Display "Temp = "
 //
 // Send a message to Node:COLLECTOR and ask for data
 //
 data[0] = 'T'; // Data to be sent
 id = 500; // Identifier
 CANWrite(id, data, 1, send_flag); // send 'T'
 //
 // Get temperature from node:COLLECT
 //
 dt = 0;
 while(!dt)dt = CANRead(&id, data, &len, &read_flag);
 if(id == 3)
 {
 temperature = data[0];
 ByteToStr(temperature,txt); // Convert to string
 Lcd_Out(1,8,txt); // Output to LCD
 Delay_ms(1000); // Wait 1 second
 }
 }

}

Figure 9.17: (Cont’d)

www.newnespress.com

510 Chapter 9

/∗∗∗
 CAN BUS EXAMPLE - NODE: COLLECTOR
 =================================

This is the COLLECTOR node of the CAN bus example. In this project a
PIC18F258 type microcontroller is used. An MCP2551 type CAN bus transceiver
is used to connect the microcontroller to the CAN bus. The microcontroller is
operated from an 8MHz crystal with an external reset button.

Pin CANRX and CANTX of the microcontroller are connected to pins RXD
and TXD of the transceiver chip respectively. Pins CANH and CANL of the
transceiver chip are connected to the CAN bus.

An LM35DZ type analog temperature sensor is connected to port AN0 of the
microcontroller. The microcontroller reads the temperature when a request is
received and then sends the temperature value as a byte to Node:DISPLAY on
the CAN bus.

CAN speed parameters are:

 Microcontroller clock: 8MHz
 CAN Bus bit rate: 100Kb/s
 Sync_Seg: 1
 Prop_Seg: 6
 Phase_Seg1: 6
 Phase_Seg2: 7
 SJW: 1
 BRP: 1
 Sample point: 65%

Author: Dogan Ibrahim
Date: October 2007
File: COLLECTOR.C
∗∗∗/

void main()
{
 unsigned char temperature, data[8];
 unsigned short init_flag, send_flag, dt, len, read_flag;
 char SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, txt[4];
 unsigned int temp;
 unsigned long mV;
 long id, mask;

 TRISA = 0xFF; // PORTA are inputs
 TRISB = 0x08; // RB2 is output, RB3 is input
//
// Configure A/D converter
//
 ADCON1 = 0x80;

Figure 9.18: COLLECTOR program listing
(Continued)

www.newnespress.com

511Advanced PIC18 Projects—CAN Bus Projects

//
// CAN BUS Timing Parameters
//
 SJW = 1;
 BRP = 1;
 Phase_Seg1 = 6;
 Phase_Seg2 = 7;
 BRP = 1;
 Prop_Seg = 6;

 init_flag = CAN_CONFIG_SAMPLE_THRICE &
 CAN_CONFIG_PHSEG2_PRG_ON &
 CAN_CONFIG_STD_MSG &
 CAN_CONFIG_DBL_BUFFER_ON &
 CAN_CONFIG_VALID_XTD_MSG &
 CAN_CONFIG_LINE_FILTER_OFF;

 send_flag = CAN_TX_PRIORITY_0 &
 CAN_TX_XTD_FRAME &
 CAN_TX_NO_RTR_FRAME;

 read_flag = 0;
//
// Initialise CAN module
//
 CANInitialize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);
//
// Set CAN CONFIG mode
//
 CANSetOperationMode(CAN_MODE_CONFIG, 0xFF);

 mask = -1;
//
// Set all MASK1 bits to 1's
//
 CANSetMask(CAN_MASK_B1, mask, CAN_CONFIG_XTD_MSG);
//
// Set all MASK2 bits to 1's
//
 CANSetMask(CAN_MASK_B2, mask, CAN_CONFIG_XTD_MSG);
//
// Set id of filter B1_F1 to 3
//
 CANSetFilter(CAN_FILTER_B2_F3,500,CAN_CONFIG_XTD_MSG);
//
// Set CAN module to NORMAL mode
//
 CANSetOperationMode(CAN_MODE_NORMAL, 0xFF);

//

Figure 9.18: (Cont’d)

www.newnespress.com

512 Chapter 9

// Program loop. Read the temperature from analog temperature
// sensor
//
 for(;;) // Endless loop
 {
 //
 // Wait until a request is received
 //
 dt = 0;
 while(!dt) dt = CANRead(&id, data, &len, &read_flag);
 if(id == 500 && data[0] == 'T')
 {
 //
 // Now read the temperature
 //
 temp = Adc_Read(0); // Read temp
 mV = (unsigned long)temp ∗ 5000 / 1024; // in mV
 temperature = mV/10; // in degrees C
 //
 // send the temperature to Node:Display
 //
 data[0] = temperature;
 id = 3; // Identifier
 CANWrite(id, data, 1, send_flag); // send temperature
 }
 }
}

Figure 9.18: (Cont’d)

Node: DISPLAY Node: COLLECTOR

Initialize CAN module Initialize CAN module
Set mode to CONFIG Set mode to CONFIG
Set Mask bits to 1’s Set Mask bits to 1’s
Set Filter value to 3 Set Filter value to 500
Set mode to NORMAL Set mode to NORMAL

DO FOREVER DO FOREVER
 Send character “T” with identifier 500 Read a character
 Read temperature with identifier 3 IF character is “T”
 Convert temperature to string Read temperature
 Display temperature on LCD Convert to digital
 Wait 1 second Convert to ºC
ENDDO Send with identifier 3
 ENDIF
 ENDDO

Figure 9.19: Operation of both nodes

www.newnespress.com

513Advanced PIC18 Projects—CAN Bus Projects

node filter is set to accept identifier 500). This is a request to the COLLECTOR

node to send the temperature reading. The program then reads the temperature from

the CAN bus, converts it to a string in array txt, and displays it on the LCD. This

process repeats after a one-second delay.

COLLECTOR Program

Figure 9.18 shows the program listing of the COLLECTOR program, called

COLLECTOR.C. The initial part of this program is the same as the DISPLAY

program. The receive filter is set to 500 so that messages with identifier 500 are

accepted by the program.

Inside the program loop, the program waits until it receives a request to send the

temperature. Here the request is identified by the reception of character “T”. Once a

valid request is received, the temperature is read and converted into �C (stored in

variable temperature) and then sent to the CAN bus as a byte with an identifier value

equal to 3. This process repeats forever.

Figure 9.19 summarizes the operation of both nodes.

www.newnespress.com

514 Chapter 9

CHAP T E R 1 0

Multi-Tasking and Real-Time
Operating Systems

Nearly all microcontroller-based systems perform more than one activity. For example,

a temperature monitoring system is made up of three tasks that normally repeat after a

short delay, namely:

� Task 1 Reads the temperature

� Task 2 Formats the temperature

� Task 3 Displays the temperature

More complex systems may have many complex tasks. In a multi-tasking system,

numerous tasks require CPU time, and since there is only one CPU, some form of

organization and coordination is needed so each task has the CPU time it needs. In

practice, each task takes a very brief amount of time, so it seems as if all the tasks are

executing in parallel and simultaneously.

Almost all microcontroller-based systems work in real time. A real-time system is a

time responsive system that can respond to its environment in the shortest possible time.

Real time does not necessarily mean the microcontroller should operate at high speed.

What is important in a real-time system is a fast response time, although high speed can

help. For example, a real-time microcontroller-based system with various external

switches is expected to respond immediately when a switch is activated or some other

event occurs.

A real-time operating system (RTOS) is a piece of code (usually called the kernel) that

controls task allocation when the microcontroller is operating in a multi-tasking

www.newnespress.com

environment. RTOS decides, for instance, which task to run next, how to coordinate the

task priorities, and how to pass data and messages among tasks.

This chapter explores the basic principles of multi-tasking embedded systems and gives

examples of an RTOS used in simple projects. Multi-tasking code and RTOS are

complex and wide topics, and this chapter describes the concepts pertaining to these

tools only briefly. Interested readers should refer to the many books and papers

available on operating systems, multi-tasking systems, and RTOS.

There are several commercially available RTOS systems for PIC microcontrollers.

At the time of writing, mikroC language did not provide a built-in RTOS. Two popular

high-level RTOS systems for PIC microcontrollers are Salvo (www.pumpkin.com),

which can be used from a Hi-Tech PIC C compiler, and the CCS (Customer Computer

Services) built-in RTOS system. In this chapter, the example RTOS projects are based

on the CCS (www.ccsinfo.com) compiler, one of the popular PIC C compilers

developed for the PIC16 and PIC18 series of microcontrollers.

10.1 State Machines

State machines are simple constructs used to perform several activities, usually in a

sequence. Many real-life systems fall into this category. For example, the operation of a

washing machine or a dishwasher is easily described with a state machine construct.

Perhaps the simplest method of implementing a state machine construct in C is to use a

switch-case statement. For example, our temperature monitoring system has three tasks,

named Task 1, Task 2, and Task 3 as shown in Figure 10.1. The state machine

implementation of the three tasks using switch-case statements is shown in Figure 10.2.

The starting state is 1, and each task increments the state number by one to select the

next state to be executed. The last state selects state 1, and there is a delay at the end of

the switch-case statement. The state machine construct is executed continuously inside

an endless for loop.

Task 3Task 2Task 1

Figure 10.1: State machine implementation

www.newnespress.com

516 Chapter 10

In many applications, the states need not be executed in sequence. Rather, the next state

is selected by the present state either directly or based on some condition. This is shown

in Figure 10.3.

for(;;)
{
 state = 1;
 switch (state)
 {
 CASE 1:
 implement TASK 1
 state++;
 break;
 CASE 2:
 implement TASK 2
 state++;
 break;
 CASE 3:
 implement TASK 3
 state = 1;
 break;
 }
 Delay_ms(n);
}

Figure 10.2: State machine implementation in C

for(;;)
{
 state = 1;
 switch (state)
 {
 CASE 1:
 implement TASK 1
 state = 2;
 break;
 CASE 2:
 implement TASK 2
 state = 3;
 break;
 CASE 3:
 implement TASK 3
 state = 1;
 break;
 }
 Delay_ms(n);
}

Figure 10.3: Selecting the next state from the current state

www.newnespress.com

517Multi-Tasking and Real-Time Operating Systems

State machines, although easy to implement, are primitive and have limited application.

They can only be used in systems which are not truly responsive, where the task

activities are well-defined and the tasks are not prioritized.

Moreover, some tasks may be more important than others. We may want some

tasks to run whenever they become eligible. For example, in a manufacturing

plant, a task that sets off an alarm when the temperature is too hot must be

run. This kind of implementation of tasks requires a sophisticated system like

RTOS.

10.2 The Real-Time Operating System (RTOS)

Real-time operating systems are built around a multi-tasking kernel which controls the

allocation of time slices to tasks. A time slice is the period of time a given task has

for execution before it is stopped and replaced by another task. This process, also

known as context switching, repeats continuously. When context switching occurs, the

executing task is stopped, the processor registers are saved in memory, the processor

registers of the next available task are loaded into the CPU, and the new task begins

execution. An RTOS also provides task-to-task message passing, synchronization of

tasks, and allocation of shared resources to tasks.

The basic parts of an RTOS are:

� Scheduler

� RTOS services

� Synchronization and messaging tools

10.2.1 The Scheduler

A scheduler is at the heart of every RTOS, as it provides the algorithms to select the

tasks for execution. Three of the more common scheduling algorithms are:

� Cooperative scheduling

� Round-robin scheduling

� Preemptive scheduling

www.newnespress.com

518 Chapter 10

Cooperative scheduling is perhaps the simplest scheduling algorithm available. Each

task runs until it is complete and gives up the CPU voluntarily. Cooperative scheduling

cannot satisfy real-time system needs, since it cannot support the prioritization of tasks

according to importance. Also, a single task may use the CPU too long, leaving too little

time for other tasks. And the scheduler has no control of the various tasks’ execution

time. A state machine construct is a simple form of a cooperative scheduling technique.

In round-robin scheduling, each task is assigned an equal share of CPU time (see

Figure 10.4). A counter tracks the time slice for each task. When one task’s time slice

completes, the counter is cleared and the task is placed at the end of the cycle. Newly

added tasks are placed at the end of the cycle with their counters cleared to 0. This, like

cooperative scheduling, is not very useful in a real-time system, since very often some

tasks take only a few milliseconds while others require hundreds of milliseconds or

more.

Preemptive scheduling is considered a real-time scheduling algorithm. It is priority-

based, and each task is given a priority (see Figure 10.5). The task with the highest

priority gets the CPU time. Real-time systems generally support priority levels ranging

from 0 to 255, where 0 is the highest priority and 255 is the lowest.

TASK 2TASK 1TASK 3TASK 2TASK 1

Figure 10.4: Round-robin scheduling

TASK 1

TASK 2

TASK 3

TASK 2

Priority

TASK 1

Time

Figure 10.5: Preemptive scheduling

www.newnespress.com

519Multi-Tasking and Real-Time Operating Systems

In some real-time systems where more than one task can be at the same priority level,

preemptive scheduling is mixed with round-robin scheduling. In such cases, tasks at

higher priority levels run before lower priority ones, and tasks at the same priority level

run by round-robin scheduling. If a task is preempted by a higher priority task, its run

time counter is saved and then restored when it regains control of the CPU.

In some systems a strict real-time priority class is defined where tasks above this class

may run to completion (or run until a resource is not available) even if there are other

tasks at the same priority level.

In a real-time system a task can be in any one of the following states (see Figure 10.6):

� Ready to run

� Running

� Blocked

When a task is first created, it is usually ready to run and is entered in the task list.

From this state, subject to the scheduling algorithm, the task can become a running task.

According to the conditions of preemptive scheduling, the task will run if it is the

highest priority task in the system and is not waiting for a resource.

A running task becomes a blocked task if it needs a resource that is not available. For

example, a task may need data from an A/D converter and is blocked until it is

Blocked

Resource available
but not highest
priority

Unblocked and
highest priority

Not the highest
priority

Highest
priority

Running

Ready

Resource not available

Figure 10.6: Task states

www.newnespress.com

520 Chapter 10

available. Once the resource can be accessed, the blocked task becomes a running task

if it is the highest priority task in the system, otherwise it moves to the ready state. Only

a running task can be blocked. A ready task cannot be blocked.

When a task moves from one state to another, the processor saves the running task’s

context in memory, loads the new task’s context from memory, and then executes the

new instructions as required.

The kernel usually provides an interface to manipulate task operations. Typical task

operations are:

� Creating a task

� Deleting a task

� Changing the priority of a task

� Changing the state of a task

10.3 RTOS Services

RTOS services are utilities provided by the kernel that help developers create real-time

tasks efficiently. For example, a task can use time services to obtain the current date and

time. Some of these services are:

� Interrupt handling services

� Time services

� Device management services

� Memory management services

� Input-output services

10.4 Synchronization and Messaging Tools

Synchronization and messaging tools are kernel constructs that help developers create

real-time applications. Some of these services are:

� Semaphores

� Event flags

www.newnespress.com

521Multi-Tasking and Real-Time Operating Systems

� Mailboxes

� Pipes

� Message queues

Semaphores are used to synchronize access to shared resources, such as common data

areas. Event flags are used to synchronize the intertask activities. Mailboxes, pipes, and

message queues are used to send messages among tasks.

10.5 CCS PIC C Compiler RTOS

The CCS PIC C compiler is one of the popular C compilers for the PIC16 and PIC18

series of microcontrollers. In addition to their PIC compilers, Customer Computer

Services offers PIC in-circuit emulators, simulators, microcontroller programmers, and

various development kits. The syntax of the CCS C language is slightly different from

that of the mikroC language, but readers who are familiar with mikroC should find CCS

C easy to use.

CCS C supports a rudimentary multi-tasking cooperative RTOS for the PIC18 series of

microcontrollers that uses their PCW and PCWH compilers. This RTOS allows a PIC

microcontroller to run tasks without using interrupts. When a task is scheduled to run,

control of the processor is given to that task. When the task is complete or does not

need the processor any more, control returns to a dispatch function, which gives control

of the processor to the next scheduled task. Because the RTOS does not use interrupts

and is not preemptive, the user must make sure that a task does not run forever.

Further details about the RTOS are available in the compiler’s user manual.

The CCS language provides the following RTOS functions in addition to the normal C

functions:

rtos_run() initiates the operation of RTOS. All task control operations are

implemented after calling this function.

rtos_terminate() terminates the operation of RTOS. Control returns to the

original program without RTOS. In fact, this function is like a return from

rtos_run().

rtos_enable() receives the name of a task as an argument. The function enables the

task so function rtos_run() can call the task when its time is due.

www.newnespress.com

522 Chapter 10

rtos_disable() receives the name of a task as an argument. The function disables the

task so it can no longer be called by rtos_run() unless it is re-enabled by calling

rtos_enable().

rtos_ yield(), when called from within a task, returns control to the dispatcher. All

tasks should call this function to release the processor so other tasks can utilize the

processor time.

rtos_msg_send() receives a task name and a byte as arguments. The function sends

the byte to the specified task, where it is placed in the task’s message queue.

rtos_msg_read() reads the byte located in the task’s message queue.

rtos_msg_ poll() returns true if there is data in the task’s message queue. This

function should be called before reading a byte from the task’s message queue.

rtos_signal() receives a semaphore name and increments that semaphore.

rtos_wait() receives a semaphore name and waits for the resource associated with the

semaphore to become available. The semaphore count is then decremented so the

task can claim the resource.

rtos_await() receives an expression as an argument, and the task waits until the

expression evaluates to true.

rtos_overrun() receives a task name as an argument, and the function returns true if

that task has overrun its allocated time.

rtos_stats() returns the specified statistics about a specified task. The statistics can be

the minimum and maximum task run times and the total task run time. The task name

and the type of statistics are specified as arguments to the function.

10.5.1 Preparing for RTOS

In addition to the preceding functions, the #use rtos() preprocessor command must be

specified at the beginning of the program before calling any of the RTOS functions. The

format of this preprocessor command is:

#use rtos(timer¼n, minor_cycle¼m)

where timer is between 0 and 4 and specifies the processor timer that will be used by

the RTOS, and minor_cycle is the longest time any task will run. The number entered

here must be followed by s, ms, us, or ns.

www.newnespress.com

523Multi-Tasking and Real-Time Operating Systems

In addition, a statistics option can be specified after the minor_cycle option, in which

case the compiler will keep track of the minimum and maximum processor times the

task uses at each call and the task’s total time used.

10.5.2 Declaring a Task

A task is declared just like any other C function, but tasks in a multi-tasking application

do not have any arguments and do not return any values. Before a task is declared, a

#task preprocessor command is needed to specify the task options. The format of this

preprocessor command is:

#task(rate¼n, max¼m, queue¼p)

where rate specifies how often the task should be called. The number specified must

be followed by s, ms, us, or ns. max specifies how much processor time a task will

use in one execution of the task. The time specifed here must be equal to or less than

the time specified by minor_cycle. queue is optional and if present specifies the

number of bytes to be reserved for the task to receive messages from other tasks.

The default value is 0.

In the following example, a task called my_ticks is every 20ms and is expected to use no

more than 100ms of processor time. This task is specified with no queue option:

#task(rate¼20ms, max¼100ms)
void my_ticks()
{

...........

...........
}

PROJECT 10.1—LEDs

In the following simple RTOS-based project, four LEDs are connected to the lower half

of PORTB of a PIC18F452-type microcontroller. The software consists of four tasks,

where each task flashes an LED at a different rate:

� Task 1, called task_B0, flashes the LED connected to port RB0 at a rate

of 250ms.

� Task 2, called task_B1, flashes the LED connected to port RB1 at a rate

of 500ms.

www.newnespress.com

524 Chapter 10

� Task 3, called task_B2, flashes the LED connected to port RB2 once a second.

� Task 4, called task_B3, flashes the LED connected to port RB3 once every two

seconds.

Figure 10.7 shows the circuit diagram of the project. A 4MHz crystal is used as the

clock. PORTB pins RB0–RB3 are connected to the LEDs through current limiting

resistors.

The software is based on the CCS C compiler, and the program listing (RTOS1.C) is

given in Figure 10.8. The main program is at the end of the program, and inside the

main program PORTB pins are declared as outputs and RTOS is started by calling

function rtos_run().

The file that contains CCS RTOS declarations should be included at the beginning of

the program. The preprocessor command #use delay tells the compiler that we are using

Figure 10.7: Circuit diagram of the project

www.newnespress.com

525Multi-Tasking and Real-Time Operating Systems

///
//
// SIMPLE RTOS EXAMPLE
// ----------------------------------
//
// This is a simple RTOS example. 4 LEDs are connected to lower half of
// PORTB of a PIC18F452 microcontroller. The program consists of 4
// tasks:
//
// Task task_B0 flashes the LED connected to port RB0 every 250ms.
// Task task_B1 flashes the LED connected to port RB1 every 500ms.
// Task task_B2 flashes the LED connected to port RB2 every second
// Task task_B3 flashes the LED connected to port RB3 every 2 seconds.
//
// The microcontroller is operated from a 4MHz crystal
//
// Programmer: Dogan Ibrahim
// Date: September, 2007
// File: RTOS1.C
//
///
#include "C:\NEWNES\PROGRAMS\rtos.h"
#use delay (clock=4000000)

//
// Define which timer to use and minor_cycle for RTOS
//
 #use rtos(timer=0, minor_cycle=10ms)

//
// Declare TASK 1 - called every 250ms
//
 #task(rate=250ms, max=10ms)
 void task_B0()
 {
 output_toggle(PIN_B0); // Toggle RB0
 }

//
// Declare TASK 2 - called every 500ms
//
 #task(rate=500ms, max=10ms)
 void task_B1()
 {
 output_toggle(PIN_B1); // Toggle RB1
 }

//
// Declare TASK 3 - called every second

Figure 10.8: Program listing of the project

www.newnespress.com

526 Chapter 10

a 4MHz clock. Then the RTOS timer is declared as Timer 0, and minor_cycle time is

declared as 10ms using the preprocessor command #use rtos.

The program consists of four similar tasks:

� task_B0 flashes the LED connected to RB0 at a rate of 250ms. Thus, the LED is

ON for 250ms, then OFF for 250ms, and so on. CCS statement output_toggle is

used to change the state of the LED every time the task is called. In the CCS

compiler PIN_B0 refers to port pin RB0 of the microcontroller.

� task_B1 flashes the LED connected to RB1 at a rate of 500ms as described.

� task_B2 flashes the LED connected to RB2 every second as described.

� Finally, task_B3 flashes the LED connected to RB3 every two seconds as

described.

//
 #task(rate=1s, max=10ms)
 void task_B2()
 {
 output_toggle(PIN_B2); // Toggle RB2
 }

//
// Declare TASK 4 - called every 2 seconds
//
 #task(rate=2s, max=10ms)
 void task_B3()
 {
 output_toggle(PIN_B3); // Toggle RB3
 }

//
// Start of MAIN program
//
void main()
{
 set_tris_b(0); // Configure PORTB as outputs
 rtos_run(); // Start RTOS
}

Figure 10.8: (Cont’d)

www.newnespress.com

527Multi-Tasking and Real-Time Operating Systems

The program given in Figure 10.8 is a multi-tasking program where the LEDs flash

independently of each other and concurrently.

PROJECT 10.2—Random Number Generator

In this slightly more complex RTOS project, a random number between 0 and 255 is

generated. Eight LEDs are connected to PORTB of a PIC18F452 microcontroller. In

addition, a push-button switch is connected to bit 0 of PORTD (RD0), and an LED is

connected to bit 7 of PORTD (RD7).

Three tasks are used in this project: Live, Generator, and Display.

� Task Live runs every 200ms and flashes the LED on port pin RD7 to indicate

that the system is working.

� Task Generator increments a variable from 0 to 255 continuously and checks

the status of the push-button switch. When the push-button switch is pressed,

the value of the current count is sent to task Display using a messaging queue.

� Task Display reads the number from the message queue and sends the received

byte to the LEDs connected to PORTB. Thus, the LEDs display a random

pattern every time the push button is pressed.

Figure 10.9 shows the project’s block diagram. The circuit diagram is given in

Figure 10.10. The microcontroller is operated from a 4MHz crystal.

Push-button
switch

PIC
18F452

LIVE
(flashes every 200ms)

PORTB
LEDs

Figure 10.9: Block diagram of the project

www.newnespress.com

528 Chapter 10

The program listing of the project (RTOS2.C) is given in Figure 10.11. The main part of

the program is in the later portion, and it configures PORTB pins as outputs. Also,

bit 0 of PORTD is configured as input and other pins of PORTD are configured as

outputs.

Timer 0 is used as the RTOS timer, and the minor_cycle is set to 1s. The program

consists of three tasks:

� Task Live runs every 200ms and flashes the LED connected to port pin RD7.

This LED indicates that the system is working.

� Task Generator runs every millisecond and increments a byte variable called

count continuously. When the push-button switch is pressed, pin 0 of PORTD

(RD0) goes to logic 0. When this happens, the current value of count is sent to

task Display using RTOS function call rtos_msg_send(display, count), where

Figure 10.10: Circuit diagram of the project

www.newnespress.com

529Multi-Tasking and Real-Time Operating Systems

///
//
// SIMPLE RTOS EXAMPLE - RANDOM NUMBER GENERATOR
// --
//
// This is a simple RTOS example. 8 LEDs are connected to PORTB
// of a PIC18F452 microcontroller. Also, a push-button switch is
// connected to port RC0 of PORTC, and an LED is connected to port
// RC7 of the microcontroller. The push-button switch is normally at logic 1.
//
// The program consists of 3 tasks called "Generator", "Display", and "Live".
//
// Task "Generator" runs in a loop and increments a counter from 0 to 255.
// This task also checks the state of the push-button switch. When the
// push-button switch is pressed, the task sends the value of the count to the
// "Display" task using messaging passing mechanism. The “Display” task
// receives the value of count and displays it on the PORTB LEDs.
//
// Task "Live" flashes the LED connected to port RC7 at a rate of 250ms.
// This task is used to indicate that the system is working and is ready for
// the user to press the push-button.
//
// The microcontroller is operated from a 4MHz crystal
//
// Programmer: Dogan Ibrahim
// Date: September, 2007
// File: RTOS2.C
//
//
#include "C:\NEWNES\PROGRAMS\rtos.h"
#use delay (clock=4000000)
int count;

//
// Define which timer to use and minor_cycle for RTOS
//
 #use rtos(timer=0, minor_cycle=1ms)

//
// Declare TASK "Live" - called every 200ms
// This task flashes the LED on port RC7
//
 #task(rate=200ms, max=1ms)
 void Live()
 {
 output_toggle(PIN_D7);
 }

//

Figure 10.11: Program listing of the project

www.newnespress.com

530 Chapter 10

Display is the name of the task where the message is sent and count is the byte

sent.

� Task Display runs every 10ms. This task checks whether there is a message

in the queue. If so, the message is extracted using RTOS function call

rtos_msg_read(), and the read byte is sent to the LEDs connected to PORTB.

Thus, the LEDs display the binary value of count as the switch is pressed. The

message queue should be checked by using function rtos_msg_poll(), as trying

to read the queue without any bytes in the queue may freeze the program.

// Declare TASK "Display" - called every 10ms
//
 #task(rate=10ms, max=1ms, queue=1)
 void Display()
 {
 if(rtos_msg_poll() > 0) // Is there a message ?
 {
 output_b(rtos_msg_read()); // Send to PORTB
 }
 }

//
// Declare TASK "Generator" - called every millisecond
//
 #task(rate=1ms, max=1ms)
 void Generator()
 {
 count++; // Increment count
 if(input(PIN_D0) == 0) // Switch pressed ?
 {
 rtos_msg_send(Display,count); // send a message
 }
 }

//
// Start of MAIN program
//
void main()
{
 set_tris_b(0); // Configure PORTB as outputs
 set_tris_d(1); // RD0=input, RD7=output
 rtos_run(); // Start RTOS
}

Figure 10.11: (Cont’d)

www.newnespress.com

531Multi-Tasking and Real-Time Operating Systems

PROJECT 10.3—Voltmeter with RS232 Serial Output

In this RTOS project, which is more complex than the preceding ones, the voltage is

read using an A/D converter and then sent over the serial port to a PC. The project

consists of three tasks: Live, Get_voltage, and To_RS232.

� Task Live runs every 200ms and flashes an LED connected to port RD7 of the

microcontroller to indicate that the system is working.

� Task Get_voltage reads channel 0 of the A/D converter where the voltage to be

measured is connected. The read value is formatted and then stored in a

variable. This task runs every two seconds.

� Task To_RS232 reads the formatted voltage and sends it over the RS232 line to

a PC every second.

Figure 10.12 shows the block diagram of the project. The circuit diagram is given in

Figure 10.13. A PIC18F8520-type microcontroller with a 10MHz crystal is used in this

project (though any PIC18F-series microcontroller can be used). The voltage to be

measured is connected to analog port AN0 of the microcontroller. The RS232 TX output

of the microcontroller (RC6) is connected to a MAX232-type RS232-level converter chip

and then to the serial input of a PC (e.g., COM1) using a 9-pin D-type connector. Port pin

RD7 is connected to an LED to indicate whether the project is working.

The program listing (RTOS3.C) of the project is given in Figure 10.14. At the beginning

of the program, the A/D is defined as 10 bits, the clock is defined as 10MHz, and the

RS232 speed is defined as 2400 baud. The RTOS timer and the minor_cycle are then

defined using the #use rtos preprocessor command.

PIC
18F8520

RS232
level
converter

PC

Live LED

Voltage to be
measured

Figure 10.12: Block diagram of the project

www.newnespress.com

532 Chapter 10

In the main part of the program PORTD is configured as output and all PORTD pins are

cleared. Then PORTA is configured as input (RA0 is the analog input), the

microcontroller’s analog inputs are configured, the A/D clock is set, and the A/D

channel 0 is selected (AN0). The RTOS is then started by calling function rtos_run().

The program consists of three tasks:

� Task Live runs every 200ms and flashes an LED connected to port pin RD7 of

the microcontroller to indicate that the project is working.

� Task Get_voltage reads the analog voltage from channel 0 (pin RA0 or AN0) of

the microcontroller. The value is then converted into millivolts by multiplying

by 5000 and dividing by 1024 (in a 10-bit A/D there are 1024 quantization

levels, and when working with a reference voltage of þ5V, each quantization

level corresponds to 5000/1024mV). The voltage is stored in a global variable

called Volts.

Figure 10.13: Circuit diagram of the project

www.newnespress.com

533Multi-Tasking and Real-Time Operating Systems

///
//
// SIMPLE RTOS EXAMPLE - VOLTMETER WITH RS232 OUTPUT
// ---
//
// This is a simple RTOS example. Analog voltage to be measured (between 0V
// and +5V) is connected to analog input AN0 of a PIC18F8520 type
// microcontroller. The microcontroller is operated from a 10MHz crystal. In
// addition, an LED is connected to port in RD7 of the microcontroller.
//
// RS232 serial output of the mirocontroller (RC6) is connected to a MAX232
// type RS232 voltage level converter chip. The output of this chip can be
// connected to the serial input of a PC (e.g., COM1) so that the measured
// voltage can be seen on the PC screen.
//
// The program consists of 3 tasks called "live", "Get_voltage", and “To_RS232”.
//
// Task "Live" runs every 200ms and it flashes the LED conencted to port pin
// RD7 of the microcontroller to indicate that the program is running and is
// ready to measure voltages.
//
// task "Get_voltage" reads analog voltage from port AN0 and then converts
// the voltage into millivolts and stores in a variable called Volts.
//
// Task "To_RS232" gets the measured voltage, converts it into a character
// array and then sends to the PC over the RS232 serial line. The serial line
// is configured to operate at 2400 Baud (higher Baud rates can also be used if
// desired).
//
// Programmer: Dogan Ibrahim
// Date: September, 2007
// File: RTOS3.C
//
///

#include <18F8520.h>
#device adc=10
#use delay (clock=10000000)
#use rs232(baud=2400,xmit=PIN_C6,rcv=PIN_C7)

unsigned int16 adc_value;
unsigned int32 Volts;

//
// Define which timer to use and minor_cycle for RTOS
//
 #use rtos(timer=0, minor_cycle=100ms)

//
// Declare TASK "Live" - called every 200ms

Figure 10.14: Program listing of the project

www.newnespress.com

534 Chapter 10

// This task flashes the LED on port RD7
//
 #task(rate=200ms, max=1ms)
 void Live()
 {
 output_toggle(PIN_D7); // Toggle RD7 LED
 }

//
// Declare TASK "Get_voltage" - called every 10ms
//
 #task(rate=2s, max=100ms)
 void Get_voltage()
 {
 adc_value = read_adc(); // Read A/D value
 Volts = (unsigned int32)adc_value*5000;
 Volts = Volts / 1024; // Voltage in mV
 }

//
// Declare TASK "To_RS232" - called every millisecond
//
 #task(rate=2s, max=100ms)
 void To_RS232()
 {
 printf("Measured Voltage = %LumV\n\r",Volts); // send to RS232
 }

//
// Start of MAIN program
//
void main()
{
 set_tris_d(0); // PORTD all outputs
 output_d(0); // Clear PORTD
 set_tris_a(0xFF); // PORTA all inputs
 setup_adc_ports(ALL_ANALOG); // A/D ports
 setup_adc(ADC_CLOCK_DIV_32); // A/D clock
 set_adc_channel(0); // Select channel 0 (AN0)
 delay_us(10);
 rtos_run(); // Start RTOS
}

Figure 10.14: (Cont’d)

www.newnespress.com

535Multi-Tasking and Real-Time Operating Systems

� Task To_RS232 reads the measured voltage from common variable Volts and

sends it to the RS232 port using the C printf statement. The result is sent in the

following format:

Measured voltage ¼ nnnn mV

The HyperTerminal program is run on the PC to get an output from the program.

A typical screen output is shown in Figure 10.15.

Using a Semaphore

The program given in Figure 10.14 is working and displays the measured voltage

on the PC screen. This program can be improved slightly by using a semaphore to

synchronize the display of the measured voltage with the A/D samples. The modified

Figure 10.15: Typical output from the program

www.newnespress.com

536 Chapter 10

///
//
// SIMPLE RTOS EXAMPLE - VOLTMETER WITH RS232 OUTPUT
// ---
//
// This is a simple RTOS example. Analog voltage to be measured (between 0V
// and +5V) is connected to analog input AN0 of a PIC18F8520 type
// microcontroller. The microcontroller is operated from a 10MHz crystal. In
// addition, an LED is connected to port in RD7 of the microcontroller.
//
// RS232 serial output of the mirocontroller (RC6) is connected to a MAX232
// type RS232 voltage level converter chip. The output of this chip can be
// connected to the serial input of a PC (e.g., COM1) so that the measured
// voltage can be seen on the PC screen.
//
// The program consists of 3 tasks called "live", "Get_voltage", and "To_RS232".
//
// Task "Live" runs every 200ms and it flashes the LED connected to port RD7
// of the microcontroller to indicate that the program is running and is ready to
// measure voltages.
//
// task "Get_voltage" reads analog voltage from port AN0 and then converts the
// voltage into millivolts and stores in a variable called Volts.
//
// Task "To_RS232" gets the measured voltage and then sends to the PC over
// the RS232 serial line. The serial line is configured to operate at 2400 Baud
// (higher Baud rates can also be used if desired).
//
// In this modified program, a semaphore is used to synchronize
// the display of the measured value with the A/D samples.
//
// Programmer: Dogan Ibrahim
// Date: September, 2007
// File: RTOS4.C
//
//

#include <18F8520.h>
#device adc=10
#use delay (clock=10000000)
#use rs232(baud=2400,xmit=PIN_C6,rcv=PIN_C7)

unsigned int16 adc_value;
unsigned int32 Volts;
int8 sem;

//
// Define which timer to use and minor_cycle for RTOS
//
 #use rtos(timer=0, minor_cycle=100ms)

Figure 10.16: Modified program listing
(Continued)

www.newnespress.com

537Multi-Tasking and Real-Time Operating Systems

//
// Declare TASK "Live" - called every 200ms
// This task flashes the LED on port RD7
//
 #task(rate=200ms, max=1ms)
 void Live()
 {
 output_toggle(PIN_D7); // Toggle RD7 LED
 }

//
// Declare TASK "Get_voltage" - called every 10ms
//
 #task(rate=2s, max=100ms)
 void Get_voltage()
 {
 rtos_wait(sem); // decrement semaphore
 adc_value = read_adc(); // Read A/D value
 Volts = (unsigned int32)adc_value*5000;
 Volts = Volts / 1024; // Voltage in mV
 rtos_signal(sem); // increment semaphore
 }

//
// Declare TASK "To_RS232" - called every millisecond
//
 #task(rate=2s, max=100ms)
 void To_RS232()
 {
 rtos_wait(sem); // Decrement semaphore
 printf("Measured Voltage = %LumV\n\r",Volts); // Send to RS232
 rtos_signal(sem); // Increment semaphore
 }

//
// Start of MAIN program
//
void main()
{
 set_tris_d(0); // PORTD all outputs
 output_d(0); // Clear PORTD
 set_tris_a(0xFF); // PORTA all inputs
 setup_adc_ports(ALL_ANALOG); // A/D ports
 setup_adc(ADC_CLOCK_DIV_32); // A/D clock
 set_adc_channel(0); // Select channel 0 (AN0)

 delay_us(10);
 sem = 1; // Semaphore is 1
 rtos_run(); // Start RTOS
}

Figure 10.16: (Cont’d)

www.newnespress.com

program (RTOS4.C) is given in Figure 10.16. The operation of the new program

is as follows:

� The semaphore variable (sem) is set to 1 at the beginning of the program.

� Task Get_voltage decrements the semaphore (calls rtos_wait) variable so

that task To_RS232 is blocked (semaphore variable sem ¼ 0) and cannot

send data to the PC. When a new A/D sample is ready, the semaphore variable

is incremented (calls rtos_signal) and task To_RS232 can continue. Task

To_RS232 then sends the measured voltage to the PC and increments the

semaphore variable to indicate that it had access to the data. Task Get_voltage

can then get a new sample. This process is repeated forever.

www.newnespress.com

539Multi-Tasking and Real-Time Operating Systems

This page intentionally left blank

Index

A

Acquisition time, 99-101

A/D converter, 9, 46, 93-95, 100

A/D conversion clock, 98

A/D model, 100

ADCON0 register, 95, 96, 98

ADCON1 register, 95, 97, 99

ADFM, 99

ADRESH register, 95, 98, 99

ADRESL register, 95, 98, 99

AND operator, 142

Arithmetic operator, 139

Arrays, 131

character, 132

passing to functions, 176

ANSI C, 189

B

Barometric pressure, 464

Baud rate, 198, 200-206

Binary number, 14

adding, 27

converting into decimal, 16

converting into

hexadecimal, 18

converting into octal, 26

division, 31

multiplication, 29

negative, 26

normalizing, 34

subtracting, 29

Bit error, 486

Bit staffing, 486

Bit timing, 486

Bitwise operators, 139, 143

Breadboard, 247

Break statement, 150-152

Brown-out detector, 9

Built-in functions, in C, 183

C

C compiler, 187, 222, 250

CAN. See Controller area

network

CANGetOperationMode, 500

CANH, 479

CANInitialize, 500

CANL, 479

CANRead, 502

CANSetBaudrate, 501

CANSetFilter, 502

CANSetMask, 501

CANSetOperationMode, 499

CANWrite, 503

Capture mode, 85, 86, 88

Card filing system, 392

Case sensitivity, 122

Char, 124

CID register (SD card), 378

CISC, 13

C library functions, 187

Clock, 7, 60-67

Clock switching, 66

Code assistant, 257

Code explorer, 253

Conditional operator;139, 145

CONFIG1H register, 53

CONFIG2H register, 57

CONFIG2L register, 56

Configuration descriptor

(USB), 421

Configuration mode (CAN), 493

Configuration registers, 52

Cooperative scheduling, 518

Constants, in C, 126

Continue statement, 158

Control field (CAN), 484

Controller area network, 481

ACK field, 485

Arbitration, 482

Configuration mode, 493

control frame, 484

CRC field, 484

data frame, 484

disable mode, 493

error frame, 485

error recognition mode, 494

listen only mode, 494

message bit timing, 486

message reception, 494

message transmission, 494

modes of operation, 493

normal operation mode, 493

overload frame, 485

remote frame, 485

start of frame, 482

CCP1CON, 91

CCPR1L, 91

www.newnespress.com

Crystal, 60, 61, 65

CSD register, 379

Current sink, 185, 186

Current source, 187

D

Data memory, 51

EEPROM, 6, 10, 149

Data memory organization, 51

Data types, in C, 126, 135

Debugging, 223, 229

in-circuit debugger, 241

Delay functions, in C, 184

Decimal number, 14, 16

Descriptor, 418

device, 418

configuration, 421

interface, 423

HID, 425

endpoint, 426

Development board, 225

BIGPIC4 development kit, 236

Futurlec PIC18F458 training

board, 237

LAB-USB experimenter kit, 225

MK-1 development board, 230

PIC18F452 development

kit, 235

PICDEM 2 Plus, 226

PICDEM 4, 228

PICDEM HPC explorer

board, 229

SSE452 development

board, 231, 232

SSE8680 development

board, 234

SSE8720 development

board, 233

Development tools, 220

hardware, 224

software, 221

Device descriptor (USB), 418

Device programmer, 238

Disable mode (CAN), 493

Do-enddo, 289

Do-while statement, 152, 155, 156

E

EasyProg PIC programmer, 241

EEPROM, 6, 10

Eeprom read, 189, 191

Eeprom write, 189, 191

Emulator, 220

In-circuit, 244

End point descriptor (HID), 425

Endless loop, 157, 187

Enumerated variable, 126, 128

Enumeration (USB), 417

Error detection (CAN), 480

Error recognition mode

(CAN), 493

Error frame (CAN), 485

Escape sequence, 128, 129

External reset, 8, 11, 51

External variable, 129

F

Flash memory, 6, 128

Floating point number, 31, 32

addition, 37

converting into decimal, 33

division, 36

multiplication, 36

normalizing, 34

subtraction, 37

For-loop statement, 153, 154

Functions, in C, 168, 171, 183

G

Goto statement, 123, 152, 157

H

Hardware development

tools, 220, 223

debuggers, 223, 229

device programmers

224, 238

in-circuit emulators, 244

HD44780 LCD controller, 192

Hexadecimal number, 13, 15

HID, 425

enable, 429

disable, 429

read, 429

write, 429

HID descriptor (USB), 419

Hyperterminal, 365

I

ICD2, 243

ICD-U40, 243

ICEPIC 3, 247

If-else statement, 148,

149, 157

In-circuit debugger, 241

In-circuit emulator, 244

INTCON register, 73, 103, 104

Integrated development

environment, 119, 224

Interface descriptor (USB), 423

Internal clock, 66

Int, 126, 127

Interrupts, 8, 43, 101

Interrupt priority, 44, 51, 103

Interrupt service, 103,

106, 112

Interrupt vector, 9, 43, 103

INT0, 102, 103, 106

INT1, 102, 107

INT2, 72

Iteration statements, 148, 152

K

Keypad, 342

L

Label field, 157, 158

LCD, 192

controller, 193

LCD library, 192

LED, 11, 120, 170

Library functions, in C, 168, 171,

183

Listen-only mode (CAN), 493

LM35DZ, 506

www.newnespress.com

542 Index

Logical operators, 139, 142

Long, 123, 125, 126

Loopback mode (CAN), 494

M

Mach X programmer, 240

Math library, 208, 210

MAX232, 200-205, 357

MCP2551 CAN

transceiver, 489, 490

Melabs U2 programmer, 240

Memory organization, 50

data, 51

program, 250

Message bit timing

(CAN), 486

Message filtering (CAN), 493

Message transmission (CAN), 494

mikroC, 119

arithmetic operators, 139

arrays, 131

bitwise operators, 139, 143

comments, 121

constants, 126

control flow, 152

do-while statements, 152,

155, 156

for-loop statements,

153, 154

goto statement, 123,

152, 157

if-else statement, 148, 149,

157

switch statement, 150

while statement, 155

data types, 126, 135

functions, 168, 171, 183

library functions, 168, 171,

183

MMC library (SD card), 371, 384

MPLAB ICD2 in-circuit

debugger, 120, 227

MPLAB ICE 4000, 245

MPX4115, 464

Multiplexed LED, 231, 319

Multi-tasking, 515

N

Node (CAN), 476, 477

Nominal bit time (CAN), 486

Normal mode (CAN), 493

NRZI, 412

O

Octal number, 15

Operators, in C, 139

OR operator, 142

Oscillator, 7, 49, 60

OSI model, 481

Overload frame (CAN), 485

P

PDL, 288

PICFlash, 2, 244

PICE-MC, 247

PIC18 parallel ports, 49,68

PORT A, 68

PORT B, 71

PORT C, 73

PORT D, 73

PORT E, 73

PIC18 CAN module.

See Controller area network

PIC18 interrupts. See Interrupts

PIC18 Timers, 74

Timer 0, 74

Timer 1, 80

Timer 2, 82

Timer 3, 84

PIC Prog Plus programmer, 242

PLL, 49, 61, 65

Pointers, 133

Pull-up resistor, 71

Power-on reset, 11, 44, 49

Power supply, 57, 59, 64

Program memory

organization, 47, 50

Pre-emptive scheduling, 518, 519

PROM, 5

Preprocessor operator, 139, 146

#define, 146

#else, 147

#endif, 147

#if, 147

#ifndef, 146

#include, 147

#undef, 146

Pressure sensor, 464

PWM, 49, 84, 190

Q

QHelp, 254

R

Random number generator, 528

RAM, 5

RCON register, 103, 104

Real-time clock, 11, 226, 230

Real-time operating system, 515,

518

Registers

ADCON0, 95, 96

ADCON1, 71, 97-99

Internal RAM, 5, 283

Relational operators, in C, 139,

141

Remote frame (CAN), 485

Repeat-until, 290

Reset, 8

power on, 11

Rezonator, 60-63, 66

RICE 3000, 246

RISC, 13

ROM, 5

Round robin scheduling, 519

RS232, 9, 193, 199, 355

RTOS, 521

S

Scheduler, 518

SD card, 371

configuration register, 377

filing system, 392

identification register, 377

library functions, 384

reading data, 377

operation, 377

www.newnespress.com

543Index

SD card(Continued)
operation control

register, 377

sector, 383-385

temperature logger, 397

writing data, 382

Semaphore, 522

Serial communication

9, 193, 199

Short, 123-125

Simulators, 221-223

Sizeof, 123, 136

Sleep mode, 11, 67

Software tools, 221

assemblers, 221

compilers, 221

Simulators, 221-223

text editors, 221, 222

Sound library, 189, 206

SPI bus, 190, 373

Static variable, 129

State machine, 516

Structures, in C, 135

Switch statement, 150, 151

T

Temperature logger, 397

Temperature sensor, 397

Text editor, 221, 222

Time delay, 185

Timers, 7

TIMER 0, 74

TIMER 1, 80

TIMER 2, 82

TIMER 3, 84

Transmit buffer (CAN), 492, 494

U

UART, 188

Unions, 123, 138

Universal serial bus, 410

Unsigned char, 124, 126

Unsigned int, 124-126

Unsigned long, 124, 125

Unsigned short, 124

USART, 188, 190, 200

USB, 409

bulk transfer, 416

bus communication

410, 414

bus specification, 410

cable, 410

connector pin assignment

410, 411

control transfer, 416, 417

data packet, 415, 416

descriptors, 418

device classes, 418

handshake packet, 416

interrupt transfer, 416, 417

isochronous transfer, 416

NRZI data, 412

programmer, 239

states, 413

token packet, 415

V

Variables, in C, 122, 123

Void, 121, 123, 161

Volatile variable, 130

W

Watchdog timer, 8, 40, 49, 55,

58, 67

While statement, 152, 155

White space, 122

X

XOR operator, 142, 143

Z

ZigBee, 12

www.newnespress.com

544 Index

	Front Cover
	Advanced PIC Microcontroller Projects in C
	Copyright Page
	Contents
	Preface
	Acknowledgments
	Chapter 1: Microcomputer Systems
	1.1 Introduction
	1.2 Microcontroller Systems
	1.2.1 RAM
	1.2.2 ROM
	1.2.3 PROM
	1.2.4 EPROM
	1.2.5 EEPROM
	1.2.6 Flash EEPROM

	1.3 Microcontroller Features
	1.3.1 Supply Voltage
	1.3.2 The Clock
	1.3.3 Timers
	1.3.4 Watchdog
	1.3.5 Reset Input
	1.3.6 Interrupts
	1.3.7 Brown-out Detector
	1.3.8 Analog-to-Digital Converter
	1.3.9 Serial Input-Output
	1.3.10 EEPROM Data Memory
	1.3.11 LCD Drivers
	1.3.12 Analog Comparator
	1.3.13 Real-time Clock
	1.3.14 Sleep Mode
	1.3.15 Power-on Reset
	1.3.16 Low-Power Operation
	1.3.17 Current Sink/Source Capability
	1.3.18 USB Interface
	1.3.19 Motor Control Interface
	1.3.20 CAN Interface
	1.3.21 Ethernet Interface
	1.3.22 ZigBee Interface

	1.4 Microcontroller Architectures
	1.4.1 RISC and CISC

	1.5 Number Systems
	1.5.1 Decimal Number System
	1.5.2 Binary Number System
	1.5.3 Octal Number System
	1.5.4 Hexadecimal Number System

	1.6 Converting Binary Numbers into Decimal
	1.7 Converting Decimal Numbers into Binary
	1.8 Converting Binary Numbers into Hexadecimal
	1.9 Converting Hexadecimal Numbers into Binary
	1.10 Converting Hexadecimal Numbers into Decimal
	1.11 Converting Decimal Numbers into Hexadecimal
	1.12 Converting Octal Numbers into Decimal
	1.13 Converting Decimal Numbers into Octal
	1.14 Converting Octal Numbers into Binary
	1.15 Converting Binary Numbers into Octal
	1.16 Negative Numbers
	1.17 Adding Binary Numbers
	1.18 Subtracting Binary Numbers
	1.19 Multiplication of Binary Numbers
	1.20 Division of Binary Numbers
	1.21 Floating Point Numbers
	1.22 Converting a Floating Point Number into Decimal
	1.22.1 Normalizing Floating Point Numbers
	1.22.2 Converting a Decimal Number into Floating Point
	1.22.3 Multiplication and Division of Floating Point Numbers
	1.22.4 Addition and Subtraction of Floating Point Numbers

	1.23 BCD Numbers
	1.24 Summary
	1.25 Exercises

	Chapter 2: PIC18F Microcontroller Series
	2.1 PIC18FXX2 Architecture
	2.1.1 Program Memory Organization
	2.1.2 Data Memory Organization
	2.1.3 The Configuration Registers
	2.1.4 The Power Supply
	2.1.5 The Reset
	2.1.6 The Clock Sources
	2.1.7 Watchdog Timer
	2.1.8 Parallel I/O Ports
	2.1.9 Timers
	2.1.10 Capture/Compare/PWM Modules (CCP)
	2.1.11 Analog-to-Digital Converter (A/D) Module
	2.1.12 Interrupts

	2.2 Summary
	2.3 Exercises

	Chapter 3: C Programming Language
	3.1 Structure of a mikroC Program
	3.1.1 Comments
	3.1.2 Beginning and Ending of a Program
	3.1.3 Terminating Program Statements
	3.1.4 White Spaces
	3.1.5 Case Sensitivity
	3.1.6 Variable Names
	3.1.7 Variable Types
	3.1.8 Constants
	3.1.9 Escape Sequences
	3.1.10 Static Variables
	3.1.11 External Variables
	3.1.12 Volatile Variables
	3.1.13 Enumerated Variables
	3.1.14 Arrays
	3.1.15 Pointers
	3.1.16 Structures
	3.1.17 Unions
	3.1.18 Operators in C
	3.1.19 Modifying the Flow of Control
	3.1.20 Mixing mikroC with Assembly Language Statements

	3.2 PIC Microcontroller Input-Output Port Programming
	3.3 Programming Examples
	3.4 Summary
	3.5 Exercises

	Chapter 4: Functions and Libraries in mikroC
	4.1 mikroC Functions
	4.1.1 Function Prototypes
	4.1.2 Passing Arrays to Functions
	4.1.3 Passing Variables by Reference to Functions
	4.1.4 Variable Number of Arguments
	4.1.5 Function Reentrancy
	4.1.6 Static Function Variables

	4.2 mikroC Built-in Functions
	4.3 mikroC Library Functions
	4.3.1 EEPROM Library
	4.3.2 LCD Library
	4.3.3 Software UART Library
	4.3.4 Hardware USART Library
	4.3.5 Sound Library
	4.3.6 ANSI C Library
	4.3.7 Miscellaneous Library

	4.4 Summary
	4.5 Exercises

	Chapter 5: PIC18 Development Tools
	5.1 Software Development Tools
	5.1.1 Text Editors
	5.1.2 Assemblers and Compilers
	5.1.3 Simulators
	5.1.4 High-Level Language Simulators
	5.1.5 Integrated Development Environments (IDEs)

	5.2 Hardware Development Tools
	5.2.1 Development Boards
	5.2.2 Device Programmers
	5.2.3 In-Circuit Debuggers
	5.2.4 In-Circuit Emulators
	5.2.5 Breadboards

	5.3 mikroC Integrated Development Environment (IDE)
	5.3.1 mikroC IDE Screen
	5.3.2 Creating and Compiling a New File
	5.3.3 Using the Simulator
	5.3.4 Using the mikroICD In-Circuit Debugger
	5.3.5 Using a Development Board

	5.4 Summary
	5.5 Exercises

	Chapter 6: Simple PIC18 Projects
	6.1 Program Description Language (PDL)
	6.1.1 START-END
	6.1.2 Sequencing
	6.1.3 IF-THEN-ELSE-ENDIF
	6.1.4 DO-ENDDO
	6.1.5 REPEAT-UNTIL

	PROJECT 6.1-Chasing LEDs
	Project Description
	Project Hardware
	Project PDL
	Project Program
	Further Development

	PROJECT 6.2-LED Dice
	Project Description
	Project Hardware
	Project PDL
	Project Program
	Using a Pseudorandom Number Generator

	PROJECT 6.3-Two-Dice Project
	Project Description
	Project Hardware
	Project PDL
	Project Program

	PROJECT 6.4-Two-Dice Project Using Fewer I/O Pins
	Project Description
	Project Hardware
	Project PDL
	Project Program
	Modifying the Program

	PROJECT 6.5-7-Segment LED Counter
	Project Description
	Project Hardware
	Project PDL
	Project Program
	Modified Program

	PROJECT 6.6-Two-Digit Multiplexed 7-Segment LED
	Project Description
	Project Hardware
	Project PDL
	Project Program

	PROJECT 6.7-Two-Digit Multiplexed 7-Segment LED Counter with Timer Interrupt
	Project Description
	Project Hardware
	Project PDL
	Project Program
	Modifying the Program

	PROJECT 6.8-Voltmeter with LCD Display
	Project Description
	HD44780 LCD Module
	Connecting the LCD
	Project Hardware
	Project PDL
	Project Program
	A More Accurate Display

	PROJECT 6.9-Calculator with Keypad and LCD
	Project Description
	Project Hardware
	Project PDL
	Project Program
	Program Using a Built-in Keypad Function

	PROJECT 6.10-Serial Communication-Based Calculator
	Project Description
	Project Hardware
	Project PDL
	Project Program
	Testing the Program
	Using Software-Based Serial Communication

	Chapter 7: Advanced PIC18 Projects-SD Card Projects
	7.1 The SD Card
	7.1.1 The SPI Bus
	7.1.2 Operation of the SD Card in SPI Mode

	7.2 mikroC Language SD Card Library Functions
	PROJECT 7.1-Read CID Register and Display on a PC Screen
	PROJECT 7.2-Read/Write to SD Card Sectors
	PROJECT 7.3-Using the Card Filing System
	PROJECT 7.4-Temperature Logger

	Chapter 8: Advanced PIC18 Projects-USB Bus Projects
	8.1 Speed Identification on the Bus
	8.2 USB States
	8.3 USB Bus Communication
	8.3.1 Packets
	8.3.2 Data Flow Types
	8.3.3 Enumeration

	8.4 Descriptors
	8.4.1 Device Descriptors
	8.4.2 Configuration Descriptors
	8.4.3 Interface Descriptors
	8.4.4 HID Descriptors
	8.4.5 Endpoint Descriptors

	8.5 PIC18 Microcontroller USB Bus Interface
	8.6 mikroC Language USB Bus Library Functions
	PROJECT 8.1-USB-Based Microcontroller Output Port
	The PC Software
	The Microcontroller Software
	Testing the Project
	Using a USB Protocol Analyzer
	Using the HID Terminal of mikroC

	PROJECT 8.2-USB-Based Microcontroller Input/ Output
	Testing the Project

	PROJECT 8.3-USB-Based Ambient Pressure Display on the PC

	Chapter 9: Advanced PIC18 Projects-CAN Bus Projects
	9.1 Data Frame
	9.1.1 Start of Frame (SOF)
	9.1.2 Arbitration Field
	9.1.3 Control Field
	9.1.4 Data Field
	9.1.5 CRC Field
	9.1.6 ACK Field

	9.2 Remote Frame
	9.3 Error Frame
	9.4 Overload Frame
	9.5 Bit Stuffing
	9.6 Types of Errors
	9.7 Nominal Bit Timing
	9.8 PIC Microcontroller CAN Interface
	9.9 PIC18F258 Microcontroller
	9.9.1 Configuration Mode
	9.9.2 Disable Mode
	9.9.3 Normal Operation Mode
	9.9.4 Listen-only Mode
	9.9.5 Loop-Back Mode
	9.9.6 Error Recognition Mode
	9.9.7 CAN Message Transmission
	9.9.8 CAN Message Reception
	9.9.9 Calculating the Timing Parameters

	9.10 mikroC CAN Functions
	9.10.1 CANSetOperationMode
	9.10.2 CANGetOperationMode
	9.10.3 CANInitialize
	9.10.4 CANSetBaudRate
	9.10.5 CANSetMask
	9.10.6 CANSetFilter
	9.10.7 CANRead
	9.10.8 CANWrite

	9.11 CAN Bus Programming
	PROJECT 9.1-Temperature Sensor CAN Bus Project
	The DISPLAY Processor
	The COLLECTOR Processor
	DISPLAY Program
	COLLECTOR Program

	Chapter 10: Multi-Tasking and Real-Time Operating Systems
	10.1 State Machines
	10.2 The Real-Time Operating System (RTOS)
	10.2.1 The Scheduler

	10.3 RTOS Services
	10.4 Synchronization and Messaging Tools
	10.5 CCS PIC C Compiler RTOS
	10.5.1 Preparing for RTOS
	10.5.2 Declaring a Task

	PROJECT 10.1-LEDs
	PROJECT 10.2-Random Number Generator
	PROJECT 10.3-Voltmeter with RS232 Serial Output
	Using a Semaphore

	Index

